[en] We compare two CO2 time series measured at the High Alpine Research Station Jungfraujoch, Switzerland (3580 m a.s.l.), in the period from 2005 to 2013 with an in situ surface measurement system using a nondispersive infrared analyzer (NDIR) and a ground-based remote sensing system using solar absorption Fourier transform infrared (FTIR) spectrometry. Although the two data sets show an absolute shift of about 13 ppm, the slopes of the annual CO2 increase are in good agreement within their uncertainties. They are 2.04±0.07 and 1.97±0.05 ppm yr-1 for the FTIR and the NDIR systems, respectively. The seasonality of the FTIR and the NDIR systems is 4.46±1.11 and 10.10±0.73 ppm, respectively. The difference is caused by a dampening of the CO2 signal with increasing altitude due to mixing processes. Whereas the minima of both data series occur in the middle of August, the maxima of the two data sets differ by about 10 weeks; the maximum of the FTIR measurements is in the middle of January, and the maximum of the NDIR measurements is found at the end of March. Sensitivity analyses revealed that the air masses measured by the NDIR system at the surface of Jungfraujoch are mainly influenced by central Europe, whereas the air masses measured by the FTIR system in the column above Jungfraujoch are influenced by regions as far west as the Caribbean and the USA.
The correlation between the hourly averaged CO2 values of the NDIR system and the individual FTIR CO2 measurements is 0.820, which is very encouraging given the largely different sampling volumes. Further correlation analyses showed, that the correlation is mainly driven by the annual CO2 increase and to a lesser degree by the seasonality. Both systems are suitable to monitor the long-term CO2 increase, because this signal is represented in the whole atmosphere due to mixing.
Lejeune, Bernard ; Université de Liège > Département d'astrophys., géophysique et océanographie (AGO) > Groupe infra-rouge de phys. atmosph. et solaire (GIRPAS)
Leuenberger, M. C.
Language :
English
Title :
Intercomparison of in-situ NDIR and column FTIR measurements of CO2 at Jungfraujoch
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Arrhenius, S.: XXXI. On the influence of carbonic acid in the air upon the temperature of the ground, Philosophical Magazine Series 5, 41, 237-276, doi:10.1080/14786449608620846, 1896.
Baltensperger, U., Gäggeler, H. W., Jost, D. T., Lugauer, M., Schwikowski, M., Weingartner, E., Seibert, P.: Aerosol climatology at the high-alpine site Jungfraujoch, Switzerland, J. Geophys. Res.-Atmos., 102, 19707-19715, doi:10.1029/97JD00928, 1997.
Barthlott, S., Schneider, M., Hase, F., Wiegele, A., Christner, E., González, Y., Blumenstock, T., Dohe, S., Garciá, O. E., Sepúlveda, E., Strong, K., Mendonca, J., Weaver, D., Palm, M., Deutscher, N. M., Warneke, T., Notholt, J., Lejeune, B., Mahieu, E., Jones, N., Griffith, D. W. T., Velazco, V. A., Smale, D., Robinson, J., Kivi, R., Heikkinen, P., Raffalski, U.: Using XCO2 retrievals for assessing the long-term consistency of NDACC/FTIR data sets, Atmos. Meas. Tech., 8, 1555-1573, doi:10.5194/amt-8-1555-2015, 2015.
Bender, M. L., Ho, D. T., Hendricks, M. B., Mika, R., Battle, M. O., Tans, P. P., Conway, T. J., Sturtevant, B., Cassar, N.: Atmospheric O2/N2 changes, 1993-2002: Implications for the partitioning of fossil fuel CO2 sequestration, Global Biogeochem. Cy., 19, GB4017, doi:10.1029/2004GB002410, 2005.
Bönisch, H., Hoor, P., Gurk, C., Feng, W., Chipperfield, M., Engel, A., Bregman, B.: Model evaluation of CO2 and SF6 in the extratropical UT/LS region, J. Geophys. Res.-Atmos., 113, D06101, doi:10.1029/2007JD008829, 2008.
Bönisch, H., Engel, A., Curtius, J., Birner, Th., Hoor, P.: Quantifying transport into the lowermost stratosphere using simultaneous in-situ measurements of SF6 and CO2, Atmos. Chem. Phys., 9, 5905-5919, doi:10.5194/acp-9-5905-2009, 2009.
Bousquet, P., Gaudry, A., Ciais, P., Kazan, V., Monfray, P., Simmonds, P. G., Jennings, S. G., O'Connor, T. C.: Atmospheric CO2 concentration variations recorded at Mace Head, Ireland, from 1992 to 1994, Phys. Chem. Earth, 21, 477-481, doi:10.1016/S0079-1946(97)81145-7, 1996.
Brenninkmeijer, C. A. M., Crutzen, P., Boumard, F., Dauer, T., Dix, B., Ebinghaus, R., Filippi, D., Fischer, H., Franke, H., Frieß, U., Heintzenberg, J., Helleis, F., Hermann, M., Kock, H. H., Koeppel, C., Lelieveld, J., Leuenberger, M., Martinsson, B. G., Miemczyk, S., Moret, H. P., Nguyen, H. N., Nyfeler, P., Oram, D., O'Sullivan, D., Penkett, S., Platt, U., Pupek, M., Ramonet, M., Randa, B., Reichelt, M., Rhee, T. S., Rohwer, J., Rosenfeld, K., Scharffe, D., Schlager, H., Schumann, U., Slemr, F., Sprung, D., Stock, P., Thaler, R., Valentino, F., van Velthoven, P.,Waibel, A., Wandel, A., Waschitschek, K., Wiedensohler, A., Xueref-Remy, I., Zahn, A., Zech, U., Ziereis, H.: Civil Aircraft for the regular investigation of the atmosphere based on an instrumented container: The new CARIBIC system, Atmos. Chem. Phys., 7, 4953-4976, doi:10.5194/acp-7-4953-2007, 2007.
Broecker, W. S., Peng, T.-H.: Tracers in the Sea, Lamont-Doherty Geological Observatory, Palisades, New York, 1982.
Buchwitz, M., de Beek, R., Noël, S., Burrows, J. P., Bovensmann, H., Schneising, O., Khlystova, I., Bruns, M., Bremer, H., Bergamaschi, P., Körner, S., Heimann, M.: Atmospheric carbon gases retrieved from SCIAMACHY by WFM-DOAS: version 0.5 CO and CH4 and impact of calibration improvements on CO2 retrieval, Atmos. Chem. Phys., 6, 2727-2751, doi:10.5194/acp-6-2727-2006, 2006.
Buschmann, M., Deutscher, N. M., Sherlock, V., Palm, M., Warneke, T., Notholt, J.: Retrieval of xCO2 from groundbased mid-infrared (NDACC) solar absorption spectra and comparison to TCCON, Atmos. Meas. Tech., 9, 577-585, doi:10.5194/amt-9-577-2016, 2016.
Butz, A., Guerlet, S., Hasekamp, O., Schepers, D., Galli, A., Aben, I., Frankenberg, C., Hartmann, J. M., Tran, H., Kuze, A., Keppel-Aleks, G., Toon, G., Wunch, D., Wennberg, P., Deutscher, N., Griffith, D., Macatangay, R., Messerschmidt, J., Notholt, J., Warneke, T.: Toward accurate CO2 and CH4 observations from GOSAT, Geophys. Res. Lett., 38, L14812, doi:10.1029/2011GL047888, 2011.
Chevallier, F., Maksyutov, S., Bousquet, P., Breón, F.-M., Saito, R., Yoshida, Y., Yokota, T.: On the accuracy of the CO2 surface fluxes to be estimated from the GOSAT observations, Geophys. Res. Lett., 36, L19807, doi:10.1029/2009GL040108, 2009.
Chevallier, F., Ciais, P., Conway, T. J., Aalto, T.,erson, B. E., Bousquet, P., Brunke, E. G., Ciattaglia, L., Esaki, Y., Fröhlich, M., Gomez, A., Gomez-Pelaez, A. J., Haszpra, L., Krummel, P. B., Langenfelds, R. L., Leuenberger, M., Machida, T., Maignan, F., Matsueda, H., Morguí, J. A., Mukai, H., Nakazawa, T., Peylin, P., Ramonet, M., Rivier, L., Sawa, Y., Schmidt, M., Steele, L. P., Vay, S. A., Vermeulen, A. T.,Wofsy, S.,Worthy, D.: CO2 surface fluxes at grid point scale estimated from a global 21 year reanalysis of atmospheric measurements, J. Geophys. Res.-Atmos., 115, D21307, doi:10.1029/2010JD013887, 2010.
Crisp, D., Atlas, R. M., Breon, F. M., Brown, L. R., Burrows, J. P., Ciais, P., Connor, B. J., Doney, S. C., Fung, I. Y., Jacob, D. J., Miller, C. E., O'Brien, D., Pawson, S., Randerson, J. T., Rayner, P., Salawitch, R. J., Sander, S. P., Sen, B., Stephens, G. L., Tans, P. P., Toon, G. C., Wennberg, P. O., Wofsy, S. C., Yung, Y. L., Kuang, Z., Chudasama, B., Sprague, G., Weiss, B., Pollock, R., Kenyon, D., Schroll, S.: The Orbiting Carbon Observatory (OCO) mission, Adv. Space Res., 34, 700-709, doi:10.1016/j.asr.2003.08.062, 2004.
Dils, B., De Mazière, M., Müller, J. F., Blumenstock, T., Buchwitz, M., de Beek, R., Demoulin, P., Duchatelet, P., Fast, H., Frankenberg, C., Gloudemans, A., Griffith, D., Jones, N., Kerzenmacher, T., Kramer, I., Mahieu, E., Mellqvist, J., Mittermeier, R. L., Notholt, J., Rinsland, C. P., Schrijver, H., Smale, D., Strandberg, A., Straume, A. G., Stremme,W., Strong, K., Sussmann, R., Taylor, J., van den Broek, M., Velazco, V., Wagner, T., Warneke, T., Wiacek, A.,Wood, S.: Comparisons between SCIAMACHY and ground-based FTIR data for total columns of CO, CH4, CO2 and N2O, Atmos. Chem. Phys., 6, 1953-1976, doi:10.5194/acp-6-1953-2006, 2006.
Dils, B., Cui, J., Henne, S., Mahieu, E., Steinbacher, M., De Mazière, M.: 1997-2007 CO trend at the high Alpine site Jungfraujoch: a comparison between NDIR surface in situ and FTIR remote sensing observations, Atmos. Chem. Phys., 11, 6735-6748, doi:10.5194/acp-11-6735-2011, 2011.
Feely, R. A., Sabine, C. L., Lee, K., Berelson, W., Kleypas, J., Fabry, V. J., Millero, F. J.: Impact of Anthropogenic CO2 on the CaCO3 System in the Oceans, Science, 305, 362-366, doi:10.1126/science.1097329, 2004.
Gurk, Ch., Fischer, H., Hoor, P., Lawrence, M. G., Lelieveld, J., Wernli, H.: Airborne in-situ measurements of vertical, seasonal and latitudinal distributions of carbon dioxide over Europe, Atmos. Chem. Phys., 8, 6395-6403, doi:10.5194/acp-8-6395-2008, 2008.
Halloran, P. R.: Does atmospheric CO2 seasonality play an important role in governing the air-sea flux of CO2?, Biogeosciences, 9, 2311-2323, doi:10.5194/bg-9-2311-2012, 2012.
Heinze, C., Maier-Reimer, E., Winn, K.: Glacial pCO2 Reduction by the World Ocean: Experiments With the Hamburg Carbon Cycle Model, Paleoceanography, 6, 395-430, doi:10.1029/91PA00489, 1991.
Henne, S., Furger, M., Prévôt, A. S. H.: Climatology of Mountain Venting-Induced Elevated Moisture Layers in the Lee of the Alps, J. Appl. Meteorol., 44, 620-633, doi:10.1175/JAM2217.1, 2005.
Henne, S., Brunner, D., Folini, D., Solberg, S., Klausen, J., Buchmann, B.: Assessment of parameters describing representativeness of air quality in-situ measurement sites, Atmos. Chem. Phys., 10, 3561-3581, doi:10.5194/acp-10-3561-2010, 2010.
Henne, S., Steinbacher, M., Mahieu, E., Bader, W., Blumenstock, T., Cuevas-Agulló, E., Brunner, D., Buchmann, B.: Comparison of ground-based remote sensing and in-situ observations of CO, CH4 and O3 accounting for representativeness uncertainty, Geophys. Res. Abstr., EGU2013-9228, EGU General Assembly 2013, Vienna, Austria, 2013.
Henne, S., Brunner, D., Oney, B., Leuenberger, M., Eugster, W., Bamberger, I., Meinhardt, F., Steinbacher, M., Emmenegger, L.: Validation of the Swiss methane emission inventory by atmospheric observations and inverse modelling, Atmos. Chem. Phys., 16, 3683-3710, doi:10.5194/acp-16-3683-2016, 2016.
Heymann, J., Reuter, M., Hilker, M., Buchwitz, M., Schneising, O., Bovensmann, H., Burrows, J. P., Kuze, A., Suto, H., Deutscher, N. M., Dubey, M. K., Griffith, D. W. T., Hase, F., Kawakami, S., Kivi, R., Morino, I., Petri, C., Roehl, C., Schneider, M., Sherlock, V., Sussmann, R., Velazco, V. A., Warneke, T., Wunch, D.: Consistent satellite XCO2 retrievals from SCIAMACHY and GOSAT using the BESD algorithm, Atmos. Meas. Tech., 8, 2961-2980, doi:10.5194/amt-8-2961-2015, 2015.
IPCC: Climate Change 2013: The Physical Science Basis. Contribution ofWorking Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp., 2013.
Karl, T. R., Trenberth, K. E.: Modern Global Climate Change, Science, 302, 1719-1723, doi:10.1126/science.1090228, 2003.
Keeling, C. D., Bacastow, R. B., Bainbridge, A. E., Ekdahl, C. A., Guenther, P. R.,Waterman, L. S., Chin, J. F. S.: Atmospheric carbon dioxide variations at Mauna Loa Observatory, Hawaii, Tellus, 28, 538-551, doi:10.1111/j.2153-3490.1976.tb00701.x, 1976.
Keeling, C. D., Whorf, T. P., Wahlen, M., van der Plichtt, J.: Interannual extremes in the rate of rise of atmospheric carbon dioxide since 1980, Nature, 375, 666-670, 1995.
I. Global Aspects, SIO Reference Series, No. 01-06, Scripps Institution of Oceanography, San Diego, 28 pp., 2001.
Komhyr, W. D., Gammon, R. H., Harris, T. B., Waterman, L. S., Conway, T. J., Taylor, W. R., Thoning, K. W.: GLOBAL ATMOSPHERIC CO2 DISTRIBUTION AND VARIATIONS FROM 1968-1982 NOAA GMCC CO2 FLASK SAMPLE DATA, J. Geophys. Res.-Atmos., 90, 5567-5596, doi:10.1029/JD090iD03p05567, 1985.
Le Quéré, C., Peters, G. P.,res, R. J.,rew, R. M., Boden, T. A., Ciais, P., Friedlingstein, P., Houghton, R. A., Marland, G., Moriarty, R., Sitch, S., Tans, P., Arneth, A., Arvanitis, A., Bakker, D. C. E., Bopp, L., Canadell, J. G., Chini, L. P., Doney, S. C., Harper, A., Harris, I., House, J. I., Jain, A. K., Jones, S. D., Kato, E., Keeling, R. F., Klein Goldewijk, K., Körtzinger, A., Koven, C., Lefèvre, N., Maignan, F., Omar, A., Ono, T., Park, G.-H., Pfeil, B., Poulter, B., Raupach, M. R., Regnier, P., Rödenbeck, C., Saito, S., Schwinger, J., Segschneider, J., Stocker, B. D., Takahashi, T., Tilbrook, B., van Heuven, S., Viovy, N., Wanninkhof, R., Wiltshire, A., Zaehle, S.: Global carbon budget 2013, Earth Syst. Sci. Data, 6, 235-263, doi:10.5194/essd-6-235-2014, 2014.
Machida, T., Kita, K., Kondo, Y., Blake, D., Kawakami, S., Inoue, G., Ogawa, T.: Vertical and meridional distributions of the atmospheric CO2 mixing ratio between northern midlatitudes and southern subtropics, J. Geophys. Res.-Atmos., 107, 8401, doi:10.1029/2001JD000910, 2002.
Machida, T., Matsueda, H., Sawa, Y., Nakagawa, Y., Hirotani, K., Kondo, N., Goto, K., Nakazawa, T., Ishikawa, K., Ogawa, T.: Worldwide Measurements of Atmospheric CO2 and Other Trace Gas Species Using Commercial Airlines, J. Atmos. Ocean. Tech., 25, 1744-1754, doi:10.1175/2008JTECHA1082.1, 2008.
Mahieu, E., Zander, R., Delbouille, L., Demoulin, P., Roland, G., Servais, C.: Observed Trends in Total Vertical Column Abundances of Atmospheric Gases from IR Solar Spectra Recorded at the Jungfraujoch, J. Atmos. Chem., 28, 227-243, doi:10.1023/A:1005854926740, 1997.
Messager, C., Schmidt, M., Ramonet, M., Bousquet, P., Simmonds, P., Manning, A., Kazan, V., Spain, G., Jennings, S. G., Ciais, P.: Ten years of CO2, CH4, CO and N2O fluxes over Western Europe inferred from atmospheric measurements at Mace Head, Ireland, Atmos. Chem. Phys. Discuss., 8, 1191-1237, doi:10.5194/acpd-8-1191-2008, 2008.
Morino, I., Uchino, O., Inoue, M., Yoshida, Y., Yokota, T., Wennberg, P. O., Toon, G. C.,Wunch, D., Roehl, C. M., Notholt, J., Warneke, T., Messerschmidt, J., Griffith, D. W. T., Deutscher, N. M., Sherlock, V., Connor, B., Robinson, J., Sussmann, R., Rettinger, M.: Preliminary validation of column-averaged volume mixing ratios of carbon dioxide and methane retrieved from GOSAT short-wavelength infrared spectra, Atmos. Meas. Tech., 4, 1061-1076, doi:10.5194/amt-4-1061-2011, 2011.
NOAA: NOAA Earth System Research Laboratory, Global Monitoring Division, availabe at: http://www.esrl.noaa.gov/gmd/ccgg/trends/, last access: 30 October 2014.
Oney, B., Henne, S., Gruber, N., Leuenberger, M., Bamberger, I., Eugster, W., Brunner, D.: The CarboCount CH sites: characterization of a dense greenhouse gas observation network, Atmos. Chem. Phys., 15, 11147-11164, doi:10.5194/acp-15-11147-2015, 2015.
Pales, J. C., Keeling, C. D.: The concentration of atmospheric carbon dioxide in Hawaii, J. Geophys. Res., 70, 6053-6076, doi:10.1029/JZ070i024p06053, 1965.
Pfister, G., Pétron, G., Emmons, L. K., Gille, J. C., Edwards, D. P., Lamarque, J. F., Attie, J. L., Granier, C., Novelli, P. C.: Evaluation of CO simulations and the analysis of the CO budget for Europe, J. Geophys. Res.-Atmos., 109, D19304, doi:10.1029/2004JD004691, 2004.
Pollock, R., Haring, R. E., Holden, J. R., Johnson, D. L., Kapitanoff, A., Mohlman, D., Phillips, C., Randall, D., Rechsteiner, D., Rivera, J., Rodriguez, J. I., Schwochert, M. A., Sutin, B. M.: The Orbiting Carbon Observatory Instrument: performance of the OCO instrument and plans for the OCO-2 instrument, Proc. SPIE 7826, Sensors, Systems, Next-Generation Satellites XIV, 78260W, doi:10.1117/12.865243, 2010.
Ray, E. A., Moore, F. L., Rosenlof, K. H., Davis, S. M., Sweeney, C., Tans, P., Wang, T., Elkins, J. W., Bönisch, H., Engel, A., Sugawara, S., Nakazawa, T., Aoki, S.: Improving stratospheric transport trend analysis based on SF6 and CO2 measurements, J. Geophys. Res.-Atmos., 119, 14110-14128, doi:10.1002/2014JD021802, 2014.
Revelle, R., Suess, H. E.: Carbon Dioxide Exchange Between Atmosphere and Ocean and the Question of an Increase of Atmospheric CO2 during the Past Decades, Tellus, 9, 18-27, doi:10.1111/j.2153-3490.1957.tb01849.x, 1957.
Rothman, L. S., Jacquemart, D., Barbe, A., Chris Benner, D., Birk, M., Brown, L. R., Carleer, M. R., Chackerian, C., Chance, K., Coudert, L. H., Dana, V., Devi, V. M., Flaud, J.-M., Gamache, R. R., Goldman, A., Hartmann, J.-M., Jucks, K.W., Maki, A. G., Mandin, J.-Y., Massie, S. T., Orphal, J., Perrin, A., Rinsland, C. P., Smith, M. A. H., Tennyson, J., Tolchenov, R. N., Toth, R. A., Vander Auwera, J., Varanasi, P., Wagner, G.: The HITRAN 2004 molecular spectroscopic database, J. Quant. Spectrosc. Ra., 96, 139-204, doi:10.1016/j.jqsrt.2004.10.008, 2005.
Sabine, C. L., Feely, R. A., Gruber, N., Key, R. M., Lee, K., Bullister, J. L., Wanninkhof, R., Wong, C. S., Wallace, D. W. R., Tilbrook, B., Millero, F. J., Peng, T.-H., Kozyr, A., Ono, T., Rios, A. F.: The Oceanic Sink for Anthropogenic CO2, Science, 305, 367-371, doi:10.1126/science.1097403, 2004.
Sawa, Y., Machida, T., Matsueda, H.: Seasonal variations of CO2 near the tropopause observed by commercial aircraft, J. Geophys. Res.-Atmos., 113, D23301, doi:10.1029/2008JD010568, 2008.
Sawa, Y., Machida, T., Matsueda, H., Niwa, Y., Tsuboi, K., Murayama, S., Morimoto, S., Aoki, S.: Seasonal changes of CO2, CH4, N2O, SF6 in the upper troposphere/lower stratosphere over the Eurasian continent observed by commercial airliner, Geophys. Res. Lett., 42, 2001-2008, doi:10.1002/2014GL062734, 2015.
Schibig, M. F., Steinbacher, M., Buchmann, B., van der Laan-Luijkx, I. T., van der Laan, S., Ranjan, S., Leuenberger, M. C.: Comparison of continuous in situ CO2 observations at Jungfraujoch using two different measurement techniques, Atmos. Meas. Tech., 8, 57-68, doi:10.5194/amt-8-57-2015, 2015.
Sillén, L. G.: Regulation of O2, N2 and CO2 in the atmosphere; thoughts of a laboratory chemist, Tellus, 18, 198-206, doi:10.1111/j.2153-3490.1966.tb00226.x, 1966.
Stohl, A., Forster, C., Frank, A., Seibert, P., Wotawa, G.: Technical note: The Lagrangian particle dispersion model FLEXPART version 6.2, Atmos. Chem. Phys., 5, 2461-2474, doi:10.5194/acp-5-2461-2005, 2005.
Tans, P. P., Fung, I. Y., Takahashi, T.: Observational Contrains on the Global Atmospheric CO2 Budget, Science, 247, 1431-1438, doi:10.1126/science.247.4949.1431, 1990.
Thompson, D. R., Chris Benner, D., Brown, L. R., Crisp, D., Malathy Devi, V., Jiang, Y., Natraj, V., Oyafuso, F., Sung, K., Wunch, D., Castanõ, R., Miller, C. E.: Atmospheric validation of high accuracy CO2 absorption coefficients for the OCO-2 mission, J. Quant. Spectrosc. Ra., 113, 2265-2276, doi:10.1016/j.jqsrt.2012.05.021, 2012.
Thoning, K. W., Tans, P. P., Komhyr, W. D.: Atmospheric carbon dioxide at Mauna Loa Observatory: 2. Analysis of the NOAA GMCC data, 1974-1985, J. Geophys. Res.-Atmos., 94, 8549-8565, doi:10.1029/JD094iD06p08549, 1989.
Trolier, M., White, J. W. C., Tans, P. P., Masarie, K. A., Gemery, P. A.: Monitoring the isotopic composition of atmospheric CO2: Measurements from the NOAA Global Air Sam-pling Network, J. Geophys. Res.-Atmos., 101, 25897-25916, doi:10.1029/96JD02363, 1996.
Uglietti, C., Leuenberger, M., Brunner, D.: European source and sink areas of CO2 retrieved from Lagrangian transport model interpretation of combined O2 and CO2 measurements at the high alpine research station Jungfraujoch, Atmos. Chem. Phys., 11, 8017-8036, doi:10.5194/acp-11-8017-2011, 2011.
van der Laan-Luijkx, I. T., van der Laan, S., Uglietti, C., Schibig, M. F., Neubert, R. E. M., Meijer, H. A. J., Brand, W. A., Jordan, A., Richter, J. M., Rothe, M., Leuenberger, M. C.: Atmospheric CO2,-(O2/N2) and-13CO2 measurements at Jungfraujoch, Switzerland: results from a flask sampling intercomparison program, Atmos. Meas. Tech., 6, 1805-1815, doi:10.5194/amt-6-1805-2013, 2013.
Vigouroux, C., Blumenstock, T., Coffey, M., Errera, Q., Garciá, O., Jones, N. B., Hannigan, J. W., Hase, F., Liley, B., Mahieu, E., Mellqvist, J., Notholt, J., Palm, M., Persson, G., Schneider, M., Servais, C., Smale, D., Thölix, L., De Mazière, M.: Trends of ozone total columns and vertical distribution from FTIR observations at eight NDACC stations around the globe, Atmos. Chem. Phys., 15, 2915-2933, doi:10.5194/acp-15-2915-2015, 2015.
Wunch, D., Toon, G. C., Blavier, J.-F. L., Washenfelder, R. A., Notholt, J., Connor, B. J., Griffith, D. W. T., Sherlock, V., Wennberg, P. O.: The Total Carbon Column Observing Network, Philos. T. R. Soc. Lond. A, 369, 2087-2112, doi:10.1098/rsta.2010.0240, 2011.
Yokota, T., Yoshida, Y., Eguchi, N., Ota, Y., Tanaka, T., Watanabe, H., Maksyutov, S.: Global Concentrations of CO2 and CH4 Retrieved from GOSAT: First Preliminary Results, SOLA, 5, 160-163, doi:10.2151/sola.2009-041, 2009.
Zander, R., Mahieu, E., Demoulin, P., Duchatelet, P., Roland, G., Servais, C., Mazière, M. D., Reimann, S., Rinsland, C. P.: Our changing atmosphere: Evidence based on long-term infrared solar observations at the Jungfraujoch since 1950, Sci. Total Environ., 391, 184-195, doi:10.1016/j.scitotenv.2007.10.018, 2008.
Zellweger, C., Ammann, M., Buchmann, B., Hofer, P., Lugauer, M., Rüttimann, R., Streit, N.,Weingartner, E., Baltensperger, U.: Summertime NOy speciation at the Jungfraujoch, 3580m above sea level, Switzerland, J. Geophys. Res.-Atmos., 105, 6655-6667, doi:10.1029/1999JD901126, 2000.
Zellweger, C., Forrer, J., Hofer, P., Nyeki, S., Schwarzenbach, B., Weingartner, E., Ammann, M., Baltensperger, U.: Partitioning of reactive nitrogen (NOy ) and dependence on meteorological conditions in the lower free troposphere, Atmos. Chem. Phys., 3, 779-796, doi:10.5194/acp-3-779-2003, 2003.
Zellweger, C., Hüglin, C., Klausen, J., Steinbacher, M., Vollmer, M., Buchmann, B.: Inter-comparison of four different carbon monoxide measurement techniques and evaluation of the long-term carbon monoxide time series of Jungfraujoch, Atmos. Chem. Phys., 9, 3491-3503, doi:10.5194/acp-9-3491-2009, 2009.
Zeng, N., Zhao, F., Collatz, G. J., Kalnay, E., Salawitch, R. J.,West, T. O., Guanter, L.: Agricultural Green Revolution as a driver of increasing atmospheric CO2 seasonal amplitude, Nature, 515, 394-397, doi:10.1038/nature13893, 2014.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.