[en] The control of optical fields is usually achieved through the electro-optic or acousto-optic effect in single-crystal ferroelectric or polar compounds such as LiNbO3 or quartz. In recent years, tremendous progress has been made in ferroelectric oxide thin film technology—a field which is now a strong driving force in areas such as electronics, spintronics and photovoltaics. Here, we apply epitaxial strain engineering to tune the optical response of BiFeO3 thin films, and find a very large variation of the optical index with strain, corresponding to an effective elasto-optic coefficient larger than that of quartz. We observe a concomitant strain-driven variation in light absorption—reminiscent of piezochromism—which we show can be manipulated by an electric field. This constitutes an electrochromic effect that is reversible, remanent and not driven by defects. These findings broaden the potential of multiferroics towards photonics and thin film acousto-optic devices, and suggest exciting device opportunities arising from the coupling of ferroic, piezoelectric and optical responses.
Disciplines :
Physics
Author, co-author :
Sando, D.
Yang, Yurong
Bousquet, Eric ; Université de Liège > Département de physique > Physique théorique des matériaux
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Lebeugle, D. et al. Room-temperature coexistence of large electric polarization and magnetic order in BiFeO3 single crystals. Phys. Rev. B 76, 024116 (2007).
Sosnowska, I., Peterlin-Neumaier, T. & Steichele, E. Spiral magnetic ordering in bismuth ferrite. J. Phys. C Solid State Phys. 15, 4835-4846 (1982).
Heron, J. T. et al. Deterministic switching of ferromagnetism at room temperature using an electric field. Nature 516, 370-373 (2014).
Seidel, J. et al. Conduction at domain walls in oxide multiferroics. Nat. Mater. 8, 229-234 (2009).
Zeches, R. J. et al. A strain-driven morphotropic phase boundary in BiFeO3. Science 326, 977-980 (2009).
Sando, D. et al. Crafting the magnonic and spintronic response of BiFeO3 films by epitaxial strain. Nat. Mater. 12, 641-646 (2013).
Rovillain, P. et al. Electric-field control of spin waves at room temperature in multiferroic BiFeO3. Nat. Mater. 9, 975-979 (2010).
Allibe, J. et al. Optical properties of integrated multiferroic BiFeO3 thin films for microwave applications. Appl. Phys. Lett. 96, 182902 (2010).
Rivera, J.-P. & Schmid, H. On the birefringence of magnetoelectric BiFeO3. Ferroelectrics 204, 23-33 (1997).
Choi, T., Lee, S., Choi, Y. J., Kiryukhin, V. & Cheong, S.-W. Switchable ferroelectric diode and photovoltaic effect in BiFeO3. Science 324, 63-66 (2009).
Sando, D. et al. Linear electro-optic effect in multiferroic BiFeO3 thin films. Phys. Rev. B 89, 195106 (2014).
Sando, D., Barthélémy, A. & Bibes, M. BiFeO3 epitaxial thin films and devices: past, present and future. J. Phys. Condens. Matter 26, 473201 (2014).
Schlom, D. G. et al. Elastic strain engineering of ferroic oxides. MRS Bull. 39, 118-130 (2014).
Choi, K. J. et al. Enhancement of ferroelectricity in strained BaTiO3 thin films. Science 306, 1005-1008 (2004).
Haeni, J. H. et al. Room-temperature ferroelectricity in strained SrTiO3. Nature 430, 758-761 (2004).
Béa, H. et al. Evidence for room-temperature multiferroicity in a compound with a giant axial ratio. Phys. Rev. Lett. 102, 217603 (2009).
Infante, I. C. et al. Bridging multiferroic phase transitions by epitaxial strain in BiFeO3. Phys. Rev. Lett. 105, 057601 (2010).
Dieulesaint, E. & Royer, D. Elastic Waves in Solids II (Springer-Verlag Berlin Heidelberg, 2000).
Gómez-Salces, S. et al. Effect of pressure on the band gap and the local FeO6 environment in BiFeO3. Phys. Rev. B 85, 144109 (2012).
Bamfield, P & Hutchings, M. G. Chromic Phenomena: Technological Applications of Colour Chemistry. 2nd edn (Royal Society of Chemistry, 2010).
Vanderbilt, D. & Cohen, M. H. Monoclinic and triclinic phases in higher-order Devonshire theory. Phys. Rev. B 63, 094108 (2001).
Ju, S. & Cai, T. Ab initio study of ferroelectric and nonlinear optical performance in BiFeO3 ultrathin films. Appl. Phys. Lett. 95, 112506 (2009).
Dong, H., Liu, H. & Wang, S. Optical anisotropy and blue-shift phenomenon in tetragonal BiFeO3. J. Phys. D Appl. Phys. 46, 135102 (2013).
Berger, R. F., Fennie, C. J. & Neaton, J. B. Band gap and edge engineering via ferroic distortion and anisotropic strain: the case of SrTiO3. Phys. Rev. Lett. 107, 146804 (2011).
Chen, P. et al. Optical properties of quasi-tetragonal BiFeO3 thin films. Appl. Phys. Lett. 96, 131907 (2010).
Rodríguez, F., Hernández, D., Garcia-Jaca, J., Ehrenberg, H. & Weitzel, H. Optical study of the piezochromic transition in CuMoO4 by pressure spectroscopy. Phys. Rev. B 61, 16497-16501 (2000).
Gaudon, M. et al. Unprecedented 'one-finger-push'-induced phase transition with a drastic color change in an inorganic material. Adv. Mater. 19, 3517-3519 (2007).
Redfern, S. A. T., Wang, C., Hong, J. W., Catalan, G. & Scott, J. F. Elastic and electrical anomalies at low-temperature phase transitions in BiFeO3. J. Phys. Condens. Matter 20, 452205 (2008).
Greenberg, C. B. Optically switchable thin films: a review. Thin Solid Films 251, 81-93 (1994).
Seidel, J. et al. Prominent electrochromism through vacancy-order melting in a complex oxide. Nat. Commun. 3, 799 (2012).
Weber, M. J. Handbook of Optical Materials (CRC Press, 2003).
Smirnova, E. P. et al. Acoustic properties of multiferroic BiFeO3 over the temperature range 4.2-830 K. Eur. Phys. J. B 83, 39-45 (2011).
Biegalski, M. D. et al. Strong strain dependence of ferroelectric coercivity in a BiFeO3 film. Appl. Phys. Lett. 98, 142902 (2011).
Park, S.-E. & Shrout, T. R. Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals. J. Appl. Phys. 82, 1804-1811 (1997).
Lean, E. G. H., White, J. M. & Wilkinson, C. D. W. Thin-film acoustooptic devices. Proc. IEEE 64, 779-788 (1976).
Aspelmeyer, M., Kippenberg, T. J. & Marquardt, F. Cavity optomechanics. Rev. Mod. Phys. 86, 1391-1452 (2014).
Imada, M., Fujimori, A. & Tokura, Y. Metal-insulator transitions. Rev. Mod. Phys. 70, 1039-1263 (1998).
Béa, H et al. Influence of parasitic phases on the properties of BiFeO3 epitaxial thin films. Appl. Phys. Lett. 87, 072508 (2005).
Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio totalenergy calculations using a plane-wave basis set. Phys. Rev. B 90, 11169-11186 (1996).
Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558-561 (1993).
Perdew, J. et al. Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100, 136406 (2008).
Krukau, A. V., Vydrov, O. A., Izmaylov, A. F. & Scuseria, G. E. Influence of the exchange screening parameter on the performance of screened hybrid functionals. J. Chem. Phys. 125, 224106 (2006).
Gajdoš, M., Hummer, K., Kresse, G., Furthmüller, J. & Bechstedt, F. Linear optical properties in the projector-augmented wave methodology. Phys. Rev. B 73, 045112 (2006).
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.