[en] We investigate multiqubit permutation-symmetric states with maximal entropy of entanglement. Such states can be viewed as particular spin states, namely anticoherent spin states. Using the Majorana represen- tation of spin states in terms of points on the unit sphere, we analyze the consequences of a point-group symmetry in their arrangement on the quantum properties of the corresponding state [1]. We focus on the identi cation of anticoherent states (for which all reduced density matrices in the symmetric subspace are maximally mixed) associated with point-group-symmetric sets of points. We provide three di erent characterizations of anticoherence and establish a link between point symmetries, anticoherence, and classes of states equivalent through stochastic local operations with classical communication. We then in- vestigate in detail the case of small numbers of qubits and construct in nite families of anticoherent states with point-group symmetry of their Majorana points, showing that anticoherent states do exist to arbitrary order.
[1] D. Baguette et al., Phys. Rev. A 92, 052333 (2015).
Disciplines :
Physics
Author, co-author :
Baguette, Dorian ; Université de Liège > Département de physique > Optique quantique
Damanet, François ; Université de Liège > Département de physique > Optique quantique
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.