[en] Fully bio- and CO2-sourced non-isocyanate polyurethanes (NIPUs) were synthesized by reaction of carbonated soybean oil (CSBO) either with biobased short diamines or amino-telechelic oligoamides derived from fatty acids to achieve respectively thermoset or thermoplastic NIPUs. Biobased carbonated vegetable oils were first obtained by metal-free coupling reactions of CO2 with epoxidized soybean oils under supercritical conditions (120 °C, 100 bar) before complete characterization by FTIR, 1H NMR, and electrospray ionization mass spectroscopy (ESI-MS). In a second step, biobased NIPUs were produced by melt-blending of the so-produced cyclocarbonated oil with the biobased aminated derivatives. The thermal and mechanical properties of resulting polymers were found to be depending on the cyclocarbonated vegetable oil/amine ratio. More precisely, short diamines and CSBO led to the formation of cross-linked NIPUs, and the resulting tensile and thermal properties were poor. In contrast, elastomeric NIPUs derived from oligoamides and CSBO exhibited a better rigidity, an improved elongation at break (εr up to 400%), and a higher thermal stability (T95 wt% > 350 °C) than those of starting oligoamides. These results are impressive and highlight the potentiality of this environmental friendly approach to prepare renewable NIPU materials of high performances.
Research Center/Unit :
Center for Education and Research on Macromolecules (CERM)
Disciplines :
Materials science & engineering Chemistry
Author, co-author :
Poussard, Loïc; University of Mons (UMons), Center of Innovation and Research in Materials & Polymers (CIRMAP), Laboratory of Polymeric and Composite Materials (LPCM), Belgium
Mariage, J.; University of Mons (UMons), Center of Innovation and Research in Materials & Polymers (CIRMAP), Laboratory of Polymeric and Composite Materials (LPCM), Belgium
Grignard, Bruno ; University of Liège - ULiège > Department of Chemistry > Center for Education and Research on Macromolecules (CERM)
Detrembleur, Christophe ; University of Liège - ULiège > Department of Chemistry > Center for Education and Research on Macromolecules (CERM)
Jérôme, Christine ; University of Liège - ULiège > Department of Chemistry > Center for Education and Research on Macromolecules (CERM)
Calberg, Cédric ; University of Liège (ULg), Department of Applied Chemistry, Laboratory of Industrial Chemistry
Heinrichs, Benoît ; University of Liège (ULg), Department of Applied Chemistry, Laboratory of Industrial Chemistry
De Winter, Julien; University of Mons-Hainaut (UMH), Organic Synthesis and Mass Spectrometry Laboratory
Gerbaux, Pascal; University of Mons-Hainaut (UMH), Organic Synthesis and Mass Spectrometry Laboratory
Raquez, Jean-Marie; University of Mons (UMons), Center of Innovation and Research in Materials & Polymers (CIRMAP), Laboratory of Polymeric and Composite Materials (LPCM), Belgium
Bonnaud, Leila; University of Mons (UMons), Center of Innovation and Research in Materials & Polymers (CIRMAP), Laboratory of Polymeric and Composite Materials (LPCM), Belgium
Dubois, Philippe; University of Mons (UMons), Center of Innovation and Research in Materials & Polymers (CIRMAP), Laboratory of Polymeric and Composite Materials (LPCM), Belgium
Language :
English
Title :
Non-isocyanate polyurethanes from carbonated soybean oil Using monomeric or oligomeric diamines To achieve thermosets or thermoplastics
Publication date :
22 March 2016
Journal title :
Macromolecules
ISSN :
0024-9297
eISSN :
1520-5835
Publisher :
American Chemical Society (ACS), Washington, United States - District of Columbia
Volume :
49
Issue :
6
Pages :
2162-2171
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
The Walloon Region in the frame of the CO2Green program F.R.S.-FNRS - Fonds de la Recherche Scientifique
Al-Homoud, D. M. S. Performance characteristics and practical applications of common building thermal insulation materials Building and Environment 2005, 40, 353-366 10.1016/j.buildenv.2004.05.013
Demharter, A. Polyurethane rigid foam, a proven thermal insulating material for applications between + 130°C and-196°C Cryogenics 1998, 38, 113-117 10.1016/S0011-2275(97)00120-3
Król, P. Synthesis methods, chemical structures and phase structures of linear polyurethanes. Properties and applications of linear polyurethanes in polyurethane elastomers, copolymers and ionomers Prog. Mater. Sci. 2007, 52, 915-1015 10.1016/j.pmatsci.2006.11.001
Santerre, J. P.; Woodhouse, K.; Laroche, G.; Labow, R. S. Understanding the biodegradation of polyurethanes: From classical implants to tissue engineering materials Biomaterials 2005, 26, 7457-7470 10.1016/j.biomaterials.2005.05.079
Zdrahala, R. J.; Zdrahala, I. J. Biomedical applications of polyurethanes: a review of past promises, present realities, and a vibrant future J. Biomater. Appl. 1999, 14, 67-90
Petrovic, Z. S. Polyurethanes from vegetables oils Polym. Rev. 2008, 48, 109-155 10.1080/15583720701834224
Pfister, D. P.; Xia, Y.; Larock, R. C. Recent advances in vegetable oil-based polyurethanes ChemSusChem 2011, 4, 703-717 10.1002/cssc.201000378
Xia, Y.; Larock, R. C. Vegetable oil-based polymeric materials: synthesis, properties, and applications Green Chem. 2010, 12, 1893-1909 10.1039/c0gc00264j
Hablot, E.; Zheng, D.; Bouquey, M.; Avérous, L. Polyurethanes Based on Castor Oil: Kinetics, Chemical, Mechanical and Thermal Properties Macromol. Mater. Eng. 2008, 293, 922-929 10.1002/mame.200800185
Zlatani, A.; Lava, C.; Zhang, W.; Petrovic, Z. S. Effect of structure on properties of polyols and polyurethanes based on different vegetable oils J. Polym. Sci., Part B: Polym. Phys. 2004, 42, 809-819 10.1002/polb.10737
Hojabri, L.; Kong, X.; Narine, S. S. Fatty Acid-Derived diisocyanate and biobased polyurethane produced from vegetable oil: Synthesis, polymerization, and characterization Biomacromolecules 2009, 10, 884-891 10.1021/bm801411w
Hojabri, L.; Kong, X.; Narine, S. S. Novel long chain unsaturated diisocyanate from fatty acid: Synthesis, characterization, and application in bio-based polyurethane J. Polym. Sci., Part A: Polym. Chem. 2010, 48, 3302-3310 10.1002/pola.24114
Hojabri, L.; Kong, X.; Narine, S. S. Functional thermoplastics from linear diols and diisocyanates produced entirely from renewable lipid sources Biomacromolecules 2010, 11, 911-918 10.1021/bm901308c
Petrovic, Z. S.; Zhang, W.; Javni, I. J. Structure and properties of polyurethanes prepared from triglyceride polyols by ozonolysis Biomacromolecules 2005, 6, 713-719 10.1021/bm049451s
Guo, A.; Demydov, D.; Zhang, W.; Petrovic, Z. S. Polyols and Polyurethanes from Hydroformylation of Soybean Oil J. Polym. Environ. 2002, 10, 49-52 10.1023/A:1021022123733
Desroches, M.; Caillol, S.; Lapinte, V.; Auvergne, R.; Boutevin, B. Synthesis of biobased polyols by thiol-ene coupling from vegetable oils Macromolecules 2011, 44, 2489-2500 10.1021/ma102884w
Fu, C.; Zheng, Z.; Yang, Z.; Chen, Y.; Shen, L. A fully bio-based waterborne polyurethane dispersion from vegetable oils: From synthesis of precursors by thiol-ene reaction to study of final material Prog. Org. Coat. 2014, 77, 53-60 10.1016/j.porgcoat.2013.08.002
Adhvaryu, A.; Erhan, S. Z. Epoxidized soybean oil as a potential source of high-temperature lubricants Ind. Crops Prod. 2002, 15, 247-254 10.1016/S0926-6690(01)00120-0
Petrovic, Z. S.; Zlatanic, A.; Lava, C. C.; Sinadinovic-Fiser, S. Epoxidation of soybean oil in toluene with peroxoacetic and peroxoformic acids-kinetics and side reactions Eur. J. Lipid Sci. Technol. 2002, 104, 293-299 10.1002/1438-9312(200205)104:5<293::AID-EJLT293>3.0.CO;2-W
More, A. S.; Maisonneuve, L.; Lebarbé, T.; Gadenne, B.; Alfos, C.; Cramail, H. Vegetable-based building-blocks for the synthesis of thermoplastic renewable polyurethanes and polyesters Eur. J. Lipid Sci. Technol. 2013, 115, 61-75 10.1002/ejlt.201200172
More, A. S.; Palaskar, D. V.; Cloutet, E.; Gadenne, B.; Alfos, C.; Cramail, H. Aliphatic polycarbonates and poly(ester carbonate)s from fatty acid derived monomers Polym. Chem. 2011, 2, 2796-2803 10.1039/c1py00326g
Hablot, E.; Donnio, B.; Bouquey, M.; Avérous, L. Dimer acid-based thermoplastic bio-polyamides: Reaction kinetics, properties and structure Polymer 2010, 51, 5895-5902 10.1016/j.polymer.2010.10.026
Desroches, M.; Escouvois, M.; Auvergne, R.; Caillol, S.; Boutevin, B. From vegetable oils to polyurethanes: Synthetic routes to polyols and main industrial products Polym. Rev. 2012, 52, 38-79 10.1080/15583724.2011.640443
Miao, S.; Wang, P.; Su, Z.; Zhang, S. Vegetable-oil-based polymers as future polymeric biomaterials Acta Biomater. 2014, 10, 1692-1704 10.1016/j.actbio.2013.08.040
Karol, M. H.; Jin, R.; Lantz, R. C. Immunohistochemical detection of toluene diisocyanate (TDI) adducts in pulmonary tissue of guinea pigs following inhalation exposure Inhalation Toxicol. 1997, 9, 63-84 10.1080/089583797198277
Karol, M. H.; Kramarik, J. A. Phenyl isocyanate is a potent chemical sensitizer Toxicol. Lett. 1996, 89, 139-146 10.1016/S0378-4274(96)03798-8
Palaskar, D. V.; Boyer, A.; Cloutet, E.; Alfos, C.; Cramail, H. Synthesis of biobased polyurethane from oleic and ricinoleic acids as the renewable resources via the AB-type self-condensation approach Biomacromolecules 2010, 11, 1202-1211 10.1021/bm100233v
Diakoumakos, C. D.; Kotzev, D. L. Non-Isocyanate-Based Polyurethanes Derived upon the Reaction of Amines with Cyclocarbonate Resins Macromol. Symp. 2004, 216, 37-46 10.1002/masy.200451205
Guan, J.; Song, Y.; Lin, Y.; Yin, X.; Zuo, M.; Zhao, Y.; Tao, X.; Zheng, Q. Progress in study of non-isocyanate polyurethane Ind. Eng. Chem. Res. 2011, 50, 6517-6527 10.1021/ie101995j
Figovsky, O. L.; Shapovalov, L. D. Features of reaction amino-cyclocarbonate for production of new type nonisocyanate polyurethane coatings Macromol. Symp. 2002, 187, 325-332 10.1002/1521-3900(200209)187:1<325::AID-MASY325>3.0.CO;2-L
Kihara, N.; Endo, T. Synthesis and properties of poly(hydroxyurethane)s J. Polym. Sci., Part A: Polym. Chem. 1993, 31, 2765-2773 10.1002/pola.1993.080311113
Ochiai, B.; Inoue, S.; Endo, T. One-pot non-isocyanate synthesis of polyurethanes from bisepoxide, carbon dioxide, and diamine J. Polym. Sci., Part A: Polym. Chem. 2005, 43, 6613-6618 10.1002/pola.21103
Rokicki, G.; Piotrowska, A. A new route to polyurethanes from ethylene carbonate, diamines and diols Polymer 2002, 43, 2927-2935 10.1016/S0032-3861(02)00071-X
Tomita, H.; Sanda, F.; Endo, T. Structural analysis of polyhydroxyurethane obtained by polyaddition of bifunctional five-membered cyclic carbonate and diamine based on the model reaction J. Polym. Sci., Part A: Polym. Chem. 2001, 39, 851-859 10.1002/1099-0518(20010315)39:6<851::AID-POLA1058>3.0.CO;2-3
Besse, V.; Auvergne, R.; Carlotti, S.; Boutevin, G.; Otazaghine, B.; Caillol, S.; Pascault, J. P.; Boutevin, B. Synthesis of isosorbide based polyurethanes: An isocyanate free method React. Funct. Polym. 2013, 73, 588-594 10.1016/j.reactfunctpolym.2013.01.002
Besse, V.; Camara, F.; Voirin, C.; Auvergne, R.; Caillol, S.; Boutevin, B. Synthesis and applications of unsaturated cyclocarbonates Polym. Chem. 2013, 4, 4545-4561 10.1039/c3py00343d
Besse, V.; Camara, F.; Méchin, F.; Fleury, E.; Caillol, S.; Pascault, J. P.; Boutevin, B. How to explain low molar masses in PolyHydroxyUrethanes (PHUs) Eur. Polym. J. 2015, 71, 1-11 10.1016/j.eurpolymj.2015.07.020
Fache, M.; Darroman, E.; Besse, V.; Auvergne, R.; Caillol, S.; Boutevin, B. Vanillin, a promising biobased building-block for monomer synthesis Green Chem. 2014, 16, 1987-1998 10.1039/c3gc42613k
Nohra, B.; Candy, L.; Blanco, J. F.; Guerin, C.; Raoul, Y.; Mouloungui, Z. From petrochemical polyurethanes to biobased polyhydroxyurethanes Macromolecules 2013, 46, 3771-3792 10.1021/ma400197c
Desroches, M.; Benyahya, S.; Besse, V.; Auvergne, R.; Boutevin, B.; Caillol, S. Synthesis of bio-based building blocks from vegetable oils: A platform chemicals approach Lipid Technol. 2014, 26, 35-38 10.1002/lite.201400014
Maisonneuve, L.; Lamarzelle, O.; Rix, E.; Grau, E.; Cramail, H. Isocyanate-Free Routes to Polyurethanes and Poly(hydroxy Urethane)s Chem. Rev. 2015, 115, 12407-12439 10.1021/acs.chemrev.5b00355
Carothers, W. H.; Hill, J. W. Studies of polymerization and ring formation. XXII. Stereochemistry and mechanism in the formation and stability of large rings J. Am. Chem. Soc. 1933, 55, 5043-5052 10.1021/ja01339a057
Figovsky, O. L.; Shapovalov, L. D. Preparation of oligomeric cyclocarbonates and their use in nonisocyanate or hybrid nonisocyanate polyurethanes. US 2004/0192803 A1, 2004.
Figovsky, O. L.; Shapovalov, L. D. Cyclocarbonate Based Polymers Including Non-Isocyanate Polyurethane Adhesives and Coatings Encycl. Surf. Colloid Sci. 2006, 1633-1652
Jing, H.; Nguyen, S. T. SnCl4-organic base: Highly efficient catalyst system for coupling reaction of CO2 and epoxides J. Mol. Catal. A: Chem. 2007, 261, 12-15 10.1016/j.molcata.2006.07.057
Li, Z.; Zhao, Y.; Yan, S.; Wang, X.; Kang, M.; Wang, J.; Xiang, H. Catalytic Synthesis of Carbonated Soybean Oil Catal. Lett. 2008, 123, 246-251 10.1007/s10562-008-9414-8
Paddock, R. L.; Nguyen, S. T. Chemical CO2 Fixation: Cr(III) Salen Complexes as Highly Efficient Catalysts for the Coupling of CO2 and Epoxides J. Am. Chem. Soc. 2001, 123, 11498-11499 10.1021/ja0164677
Bahr, M.; Mulhaupt, R. Linseed and soybean oil-based polyurethanes prepared via the non-isocyanate route and catalytic carbon dioxide conversion Green Chem. 2012, 14, 483-489 10.1039/c2gc16230j
Blattmann, H.; Fleischer, M.; Bähr, M.; Mülhaupt, R. Isocyanate- and Phosgene-Free Routes to Polyfunctional Cyclic Carbonates and Green Polyurethanes by Fixation of Carbon Dioxide Macromol. Rapid Commun. 2014, 35, 1238-1254 10.1002/marc.201400209
Carré, C.; Bonnet, L.; Avérous, L. Solvent- and catalyst-free synthesis of fully biobased nonisocyanate polyurethanes with different macromolecular architectures RSC Adv. 2015, 5, 100390-100400 10.1039/C5RA17638G
López Téllez, G.; Vigueras-Santiago, E.; Hernández-López, S. Characterization of linseed oil epoxidized at different percentages Superficies y Vacío 2009, 22, 5-10
Alves, M.; Grignard, B.; Gennen, S.; Detrembleur, C.; Jerome, C.; Tassaing, T. Organocatalytic synthesis of bio-based cyclic carbonates from CO2 and vegetable oils RSC Adv. 2015, 5, 53629-53636 10.1039/C5RA10190E
Boyer, A.; Cloutet, E.; Tassaing, T.; Gadenne, B.; Alfos, C.; Cramail, H. Solubility in CO2 and carbonation studies of epoxidized fatty acid diesters: Towards novel precursors for polyurethane synthesis Green Chem. 2010, 12, 2205-2213 10.1039/c0gc00371a
Gandini, A.; Lacerda, T. M.; Carvalho, A. J. F. A straightforward double coupling of furan moieties onto epoxidized triglycerides: Synthesis of monomers based on two renewable resources Green Chem. 2013, 15, 1514-1519 10.1039/c3gc40358k
Wang, R.; Schuman, T. Towards green: A review of recent developments in bio-renewable epoxy resins from vegetable oils RSC Green Chem. 2015, 202-241
Javni, I.; Petrovic, Z. S.; Guo, A.; Fuller, R. Thermal stability of polyurethanes based on vegetable oils J. Appl. Polym. Sci. 2000, 77, 1723-1734 10.1002/1097-4628(20000822)77:8<1723::AID-APP9>3.0.CO;2-K
Ferguson, J.; Petrovic, Z. S. Thermal stability of segmented polyurethanes Eur. Polym. J. 1976, 12, 177-181 10.1016/0014-3057(76)90050-1
Carré, C.; Bonnet, L.; Avérous, L. Original biobased nonisocyanate polyurethanes: Solvent- and catalyst-free synthesis, thermal properties and rheological behaviour RSC Adv. 2014, 4, 54018-54025 10.1039/C4RA09794G
Ochiai, B.; Utsuno, T. Non-isocyanate synthesis and application of telechelic polyurethanes via polycondensation of diurethanes obtained from ethylene carbonate and diamines J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 525-533 10.1002/pola.26418
Grignard, B.; Thomassin, J. M.; Gennen, S.; Poussard, L.; Bonnaud, L.; Raquez, J. M.; Dubois, P.; Tran, M. P.; Park, C. B.; Jerome, C.; Detrembleur, C. CO2-blown microcellular non-isocyanate polyurethane (NIPU) foams: from bio- and CO2-sourced monomers to potentially thermal insulating materials Green Chem. 2016, 10.1039/C5GC02723C