[en] A theoretical model of Gd/Fe multilayers is constructed using the atomistic spin dynamics formalism. By
varying the thicknesses and number of layers we have shown that a strong dependence of the energy required for thermally induced magnetization switching (TIMS) is present;with a larger number of interfaces, lower energy is required. The results of the layer resolved dynamics show that the reversal process of the multilayered structures, similar to that of a GdFeCo alloy, is driven by the antiferromagnetic interaction between the transition-metal and rare-earth components. Finally, while the presence of the interface drives the reversal process, we show here that the switching process does not initiate at the surface but from the layers furthest from it, a departure from the alloy behavior which expands the classes of material types exhibiting TIMS.
Disciplines :
Physics
Author, co-author :
Xu, Chudong
Ostler, Thomas ; Université de Liège > Département de physique > Physique des matériaux et nanostructures
Chantrell, Roy
Language :
English
Title :
Thermally induced magnetization switching in Gd/Fe multilayers
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
J. Stohr and H. C. Siegmann, in Magnetism: From Fundamentals to Nanoscale Dynamics (Springer, Berlin, 2006).
Z. Li and S. Zhang, Phys. Rev. B 69, 134416 (2004). PRBMDO 1098-0121 10.1103/PhysRevB.69.134416
T. Gerrits, H. A. M. van den Berg, J. Hohlfeld, L. Bar, and T. Rasing, Nature (London) 418, 509 (2002). NATUAS 0028-0836 10.1038/nature00905
I. Tudosa, C. Stamm, A. B. Kashuba, F. King, H. C. Siegmann, J. Stohr, G. Ju, B. Lu, and D. Weller, Nature (London) 428, 831 (2004). NATUAS 0028-0836 10.1038/nature02438
C. D. Stanciu, A. Tsukamoto, A. V. Kimel, F. Hansteen, A. Kirilyuk, A. Itoh, and Th. Rasing, Phys. Rev. Lett. 99, 217204 (2007). 10.1103/PhysRevLett.99.217204
C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, and T. Rasing, Phys. Rev. Lett. 99, 047601 (2007). PRLTAO 0031-9007 10.1103/PhysRevLett.99.047601
I. Radu, K. Vahaplar, C. Stamm, T. Kachel, N. Pontius, H. Dürr, T. A. Ostler, J. Barker, R. F. L. Evans, R. W. Chantrell, A. Tsukamoto, A. Itoh, A. Kirilyuk, T. Rasing, and V. Kimel, Nature (London) 472, 205 (2011). 10.1038/nature09901
T. A. Ostler, J. Barker, R. F. L. Evans, R. W. Chantrell, U. Atxitia, O. Chubykalo-Fesenko, S. El Moussaoui, L. Le Guyader, E. Mengotti, L. J. Heyderman, F. Nolting, A. Tsukamoto, A. Itoh, D. Afanasiev, B. Ivanov, M. Kalashnikova, K. Vahaplar, J. Mentink, A. Kirilyuk, T. Rasing, and V. Kimel, Nat. Commun. 3, 666 (2012). 2041-1723 10.1038/ncomms1666
E. Beaurepaire, J. C. Merle, A. Daunois, and J. Y. Bigot, Phys. Rev. Lett. 76, 4250 (1996). PRLTAO 0031-9007 10.1103/PhysRevLett.76.4250
C. Stanciu, A. Kimel, F. Hansteen, A. Tsukamoto, A. Itoh, A. Kirilyuk, and T. Rasing, Phys. Rev. B 73, 220402 (R) (2006). PRBMDO 1098-0121 10.1103/PhysRevB.73.220402
Z. A. Azim, X. Fong, T. A. Ostler, R. W. Chantrell, and R. Kaushik, IEEE Electron Device Lett. 35, 1317 (2014). EDLEDZ 0741-3106 10.1109/LED.2014.2364232
A. R. Khorsand, M. Savoini, A. Kirilyuk, A. V. Kimel, A. Tsukamoto, A. Itoh, and T. Rasing, Phys. Rev. Lett. 108, 127205 (2012). PRLTAO 0031-9007 10.1103/PhysRevLett.108.127205
J. Mentink, J. Hellsvik, D. Afanasiev, B. Ivanov, A. Kirilyuk, A. Kimel, O. Eriksson, M. Katsnelson, and T. Rasing, Phys. Rev. Lett. 108, 057202 (2012). PRLTAO 0031-9007 10.1103/PhysRevLett.108.057202
U. Atxitia, T. Ostler, J. Barker, R. F. L. Evans, R. W. Chantrell, and O. Chubykalo-Fesenko, Phys. Rev. B 87, 224417 (2013). PRBMDO 1098-0121 10.1103/PhysRevB.87.224417
J. Barker, U. Atxitia, T. A. Ostler, O. Hovorka, O. Chubykalo-Fesenko, and R. W. Chantrell, Sci. Rep. 3, 3262 (2013). 2045-2322 10.1038/srep03262
S. Mangin, M. Gottwald, C.-H. Lambert, D. Steil, V. Uhlir, L. Pang, M. Hehn, S. Alebrand, M. Cinchetti, G. Malinowski, Y. Fainman, M. Aeschlimann, and E. E. Fullerton, Nat. Mater. 13, 286 (2014). 1476-1122 10.1038/nmat3864
R. F. L. Evans, T. A. Ostler, R. W. Chantrell, I. Radu, and T. Rasing, Appl. Phys. Lett. 104, 082410 (2014). APPLAB 0003-6951 10.1063/1.4867015
U. Nowak, in Handbook of Magnetism and Advanced Magnetic Materials, Vol. 2 (John Wiley & Sons, Hoboken, NJ, 2007).
T. A. Ostler, R. F. L. Evans, R. W. Chantrell, U. Atxitia, O. Chubykalo-Fesenko, I. Radu, R. Abrudan, F. Radu, A. Tsukamoto, A. Itoh, A. Kirilyuk, T. Rasing, and A. Kimel, Phys. Rev. B 84, 024407 (2011). PRBMDO 1098-0121 10.1103/PhysRevB.84.024407
T. L. Gilbert, IEEE Transactions on Magnetics 40, 3443 (2004). 10.1109/TMAG.2004.836740
J. L. García-Palacios and F. J. Lázaro, Phys. Rev. B 58, 14937 (1998). PRBMDO 0163-1829 10.1103/PhysRevB.58.14937
O. Chubykalo-Fesenko, U. Nowak, R. W. Chantrell, and D. Garanin, Phys. Rev. B 74, 094436 (2006). PRBMDO 1098-0121 10.1103/PhysRevB.74.094436
K. Gilmore, Y. U. Idzerda, and M. D. Stiles, Phys. Rev. Lett. 99, 027204 (2007). PRLTAO 0031-9007 10.1103/PhysRevLett.99.027204
D. Berkov, in Handbook of Magnetism and Advanced Magnetic Materials (Springer, Sussex, 2006).
B. Skubic, J. Hellsvik, L. Nordström, and O. Eriksson, J. Phys. Condens. Matter 20, 315203 (2008). JCOMEL 0953-8984 10.1088/0953-8984/20/31/315203
R. K. Wangsness, Phys. Rev. 91, 1085 (1953). 10.1103/PhysRev.91.1085
D. Lewis and N. Nigam, J. Comput. Appl. Math. 151, 141 (2003). JCAMDI 0377-0427 10.1016/S0377-0427(02)00743-4
M. Aquino, C. Serpico, and G. Miano, J. Comput. Phys. 209, 730 (2005). JCTPAH 0021-9991 10.1016/j.jcp.2005.04.001
J. H. Mentink, M. V. Tretyakov, A. Fasolino, M. I. Katsnelson, and T. Rasing, J. Phys. Condens. Matter 22, 176001 (2010). JCOMEL 0953-8984 10.1088/0953-8984/22/17/176001
R. F. L. Evans, W. J. Fan, P. Chureemart, T. A. Ostler, M. O. A. Ellis, and R. W. Chantrell, J. Phys.: Condens. Matter 26, 103202 (2014). JCOMEL 0953-8984 10.1088/0953-8984/26/10/103202
J. Jensen and A. R.Mackintosh, in Rare Earth Magnetism: Structures and Excitations (University of Copenhagen, Clarendon, UK, 1991).
N. Kazantseva, U. Nowak, R. W. Chantrell, J. Hohlfeld, and A. Rebei, Europhys. Lett. 81, 27004 (2008). EULEEJ 0295-5075 10.1209/0295-5075/81/27004
J. Chen, D. Tzou, and J. Beraun, Int. J. Heat Mass Transf. 49, 307 (2006). IJHMAK 0017-9310 10.1016/j.ijheatmasstransfer.2005.06.022
Z. Lin and L. V. Zhigilei, Appl. Surf. Sci. 253, 6295 (2007). ASUSEE 0169-4332 10.1016/j.apsusc.2007.01.032
R. Chimata, A. Bergman, L. Bergqvist, B. Sanyal, and O. Eriksson, Phys. Rev. Lett. 109, 157201 (2012). PRLTAO 0031-9007 10.1103/PhysRevLett.109.157201
J. Mendil, P. Nieves, O. Chubykalo-Fesenko, J. Walowski, T. Santos, S. Pisana, and M. Münzenberg, Sci. Rep. 4, 3980 (2014). 2045-2322 10.1038/srep03980
M. Fähnle, J. Seib, and C. Illg, Phys. Rev. B 82, 144405 (2010). 10.1103/PhysRevB.82.144405
B. Koopmans, G. Malinowski, F. Dalla Longa, D. Steiauf, M. Fähnle, T. Roth, M. Cinchetti, and M. Aeschlimann, Nat. Mater. 9, 259 (2010). 10.1038/nmat2593
I. Radu, C. Stamm, A. Eschenlohr, F. Radu, R. Abrudan, K. Vahaplar, T. Kachel, N. Pontius, R. Mitzner, K. Holldack, A. Fölisch, R. F. L. Evans, T. A. Ostler, J. H. Mentink, R. W. Chantrell, A. Tsukamoto, A. Itoh, A. Kirilyuk, A. V. Kimal, and T. Rasing, SPIN 05, 1550004 (2015). 2010-3247 10.1142/S2010324715500046
K. Zakeri, T. Chuang, A. Ernst, L. M. Sandratskii, P. Buczek, and Y. Zhang, Nat. Nanotechnol. 8, 853 (2013). 1748-3387 10.1038/nnano.2013.188
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.