[en] Positron emission tomography combined with computed tomography (PET/CT) using RGD-based radiopharmaceuticals allows quantification of tumour expression of integrin αvβ3 in vivo. Integrins and, in particular, integrin αvβ3 are involved in numerous physiologic and pathologic processes, including angiogenesis. RGD-based radiopharmaceuticals targeting integrin αvβ3, expressed by activated endothelial cells, have been developed in order to quantify angiogenesis. However, integrin αvβ3 is also frequently expressed by tumour cells and/or tumour microenvironment cells, e.g., bone marrow derived cells and osteoclasts in bone. Upregulation of integrin αvβ3 by tumour cells promotes cell survival, proliferation, invasion, metastasis and resistance to treatment. Therefore, the PET signal related to RGD-based radiopharmaceuticals may not reflect angiogenesis only. Moreover, tumours may develop mechanisms other than angiogenesis to ensure blood supply such as vascular mimicry, vessel co-option and intussusceptive angiogenesis that might not be assessed with RGD PET/CT. In the setting of treatment assessment, a drop of the RGD PET signal certainly means tumour response (endothelial and/or tumour cell apoptosis and/or vessel normalisation). On the other hand, a stable or increased RGD PET signal may be related to absence of response or upregulation of integrin αvβ3 in adaptative response to therapy, promoting resistance. This review illustrates the complexity of the role of integrin αvβ3 in oncology and its role in non-oncologic diseases such as osteoarthtitis and cardiovascular diseases.
Disciplines :
Laboratory medicine & medical technology Oncology Radiology, nuclear medicine & imaging
Author, co-author :
WITHOFS, Nadia ; Centre Hospitalier Universitaire de Liège - CHU > Service médical de médecine nucléaire et imagerie onco
HUSTINX, Roland ; Centre Hospitalier Universitaire de Liège - CHU > Service médical de médecine nucléaire et imagerie onco
Language :
English
Title :
Integrin αvβ3 and RGD-based radiopharmaceuticals
Alternative titles :
[en] L’intégrine αvβ3 et l’imagerie par les radiopharmaceutiques de type RGD
Publication date :
19 February 2016
Journal title :
Médecine Nucléaire: Imagerie Fonctionnelle et Métabolique
ISSN :
0928-1258
eISSN :
1878-6820
Publisher :
Elsevier, Paris, France
Volume :
40 (2016)
Pages :
41-54
Peer reviewed :
Peer Reviewed verified by ORBi
Commentary :
Résumé: Les radiopharmaceutiques de type RGD dédiés à l’imagerie par tomographie à émission de positons associée à la tomodensitométrie (TEP/ TDM) permettent la quantification de l’expression de l’intégrine αvβ3 in vivo. Les intégrines et, en particulier, l’intégrine αvβ3 sont impliquées dans de nombreux processus physiologiques et pathologiques, parmi lesquels l’angiogenèse. Les radiopharmaceutiques de type RGD ciblant l’intégrine αvβ3, exprimée par les cellules endothéliales activées, ont été développés afin de quantifier l’angiogenèse. Cependant, l’intégrine αvβ3 est également souvent exprimée par les cellules tumorales et/ou des cellules du microenvironnement de la tumeur comme, par exemple, des cellules dérivées de la moelle osseuse et les ostéoclastes dans l’os. De plus, l’intégrine αvβ3 peut être surexprimée par les cellules tumorales, favorisant la survie cellulaire, la prolifération, l’invasion, le potentiel métastatique et la résistance au traitement. Par conséquent, le signal PET lié au RGD peut ne pas refléter l’angiogenèse uniquement. En outre, les tumeurs peuvent développer des mécanismes autres que l’angiogenèse tels que le mimétisme vasculaire, la cooptation vasculaire et l’angiogenèse intussusceptive qui pourraient ne pas être visualisés par TEP/TDM au RGD. Dans le cadre de l’évaluation des traitements antiangiogéniques, une baisse de la captation du traceur RGD en TEP signifie certainement une réponse tumorale liée à l’apoptose des cellules endothéliales et/ou tumorales et/ou à la normalisation des vaisseaux. D’autre part, la stabilité, voire l’augmentation, de la captation du traceur RGD en cours de traitement pourrait être le reflet de l’absence de réponse mais également de la surexpression de l’intégrine αvβ3 en réponse adaptative au traitement favorisant la résistance tumorale. Cette revue illustre la complexité du rôle de l’intégrine αvβ3 en oncologie et décrit son rôle dans les maladies non-oncologiques telles que les maladies cardiovasculaires et l’arthrose.
Haubner R., Wester H.J., Reuning U., et al. Radiolabeled αvβ3 integrin antagonists: a new class of tracers for tumor targeting. J Nucl Med 1999, 40:1061-1071.
Ruoslahti E. Integrins. J Clin Invest 1991, 87:1-5.
Takada Y., Ye X., Simon S. The integrins. Genome Biol 2007, 8:215.
Seguin L., Desgrosellier J.S., Weis S.M., Cheresh D.A. Integrins and cancer: regulators of cancer stemness, metastasis, and drug resistance. Trends Cell Biol 2015, 25:234-240.
Bader B.L., Rayburn H., Crowley D., Hynes R.O. Extensive vasculogenesis, angiogenesis, and organogenesis precede lethality in mice lacking all αv integrins. Cell 1998, 95:507-519.
Jackson T., Blakemore W., Newman J.W., et al. Foot-and-mouth disease virus is a ligand for the high-affinity binding conformation of integrin α5β1: influence of the leucine residue within the RGDL motif on selectivity of integrin binding. J Gen Virol 2000, 81:1383-1391.
Pierschbacher M.D., Ruoslahti E. Variants of the cell recognition site of fibronectin that retain attachment-promoting activity. Proc Natl Acad Sci U S A 1984, 81:5985-5988.
Hautanen A., Gailit J., Mann D.M., Ruoslahti E. Effects of modifications of the RGD sequence and its context on recognition by the fibronectin receptor. J Biol Chem 1989, 264:1437-1442.
Ruoslahti E. RGD and other recognition sequences for integrins. Annu Rev Cell Dev Biol 1996, 12:697-715.
Pytela R., Pierschbacher M.D., Ruoslahti E. A 125/115-kDa cell surface receptor specific for vitronectin interacts with the arginine-glycine-aspartic acid adhesion sequence derived from fibronectin. Proc Natl Acad Sci U S A 1985, 82:5766-5770.
Healy J.M., Murayama O., Maeda T., Yoshino K., Sekiguchi K., Kikuchi M. Peptide ligands for integrin αvβ3 selected from random phage display libraries. Biochemistry 1995, 34:3948-3955.
Pfaff M., Tangemann K., Muller B., et al. Selective recognition of cyclic RGD peptides of NMR defined conformation by αIIbβ3, αvβ3, and α5β1 integrins. J Biol Chem 1994, 269:20233-20238.
Haubner R.F.D., Kessler H. Stereoisomeric peptide libraries and peptidomimetics for designing selective inhibitors of the αvβ3 integrin for a new cancer therapy. Angew Chem Int Ed Engl 1997, 36:1374-1389.
Cheresh D.A. Human endothelial cells synthesize and express an Arg-Gly-Asp-directed adhesion receptor involved in attachment to fibrinogen and von Willebrand factor. Proc Natl Acad Sci U S A 1987, 84:6471-6475.
Folkman J. Angiogenesis. Annu Rev Med 2006, 57:1-18.
Brooks P.C., Clark R.A., Cheresh D.A. Requirement of vascular integrin αvβ3 for angiogenesis. Science 1994, 264:569-571.
Weis S.M., Cheresh D.A. αv integrins in angiogenesis and cancer. Cold Spring Harb Perspect Med 2011, 1:a006478.
Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med 1971, 285:1182-1186.
Carmeliet P., Jain R.K. Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases. Nat Rev Drug Discov 2011, 10:417-427.
Abdollahi A., Folkman J. Evading tumor evasion: current concepts and perspectives of anti-angiogenic cancer therapy. Drug Resist Updat 2010, 13:16-28.
Eskens F.A., Dumez H., Hoekstra R., et al. Phase I and pharmacokinetic study of continuous twice weekly intravenous administration of cilengitide (EMD 121974), a novel inhibitor of the integrins αvβ3 and αvβ5 in patients with advanced solid tumours. Eur J Cancer 2003, 39:917-926.
Wirth M., Heidenreich A., Gschwend J.E., et al. A multicenter phase 1 study of EMD 525797 (DI17E6), a novel humanized monoclonal antibody targeting αv integrins, in progressive castration-resistant prostate cancer with bone metastases after chemotherapy. Eur Urol 2014, 65:897-904.
Hersey P., Sosman J., O'Day S., et al. A randomized phase 2 study of etaracizumab, a monoclonal antibody against integrin αvβ3, + or - dacarbazine in patients with stage IV metastatic melanoma. Cancer 2010, 116:1526-1534.
Elez E., Kocakova I., Hohler T., et al. Abituzumab combined with cetuximab plus irinotecan versus cetuximab plus irinotecan alone for patients with KRAS wild-type metastatic colorectal cancer: the randomised phase I/II Poseidon trial. Ann Oncol 2015, 26:132-140.
Stupp R., Hegi M.E., Gorlia T., et al. Cilengitide combined with standard treatment for patients with newly diagnosed glioblastoma with methylated MGMT promoter (Centric EORTC 26071-22072 study): a multicentre, randomised, open-label, phase 3 trial. Lancet Oncol 2014, 15:1100-1108.
Reynolds A.R., Hart I.R., Watson A.R., et al. Stimulation of tumor growth and angiogenesis by low concentrations of RGD-mimetic integrin inhibitors. Nat Med 2009, 15:392-400.
Reynolds L.E., Wyder L., Lively J.C., et al. Enhanced pathological angiogenesis in mice lacking β3 integrin or β3 and β5 integrins. Nat Med 2002, 8:27-34.
Chen F., Ehlerding E.B., Cai W. Theranostic nanoparticles. J Nucl Med 2014, 55:1919-1922.
Cheresh D.A., Harper J.R. Arg-Gly-Asp recognition by a cell adhesion receptor requires its 130-kDa α subunit. J Biol Chem 1987, 262:1434-1437.
Gladson C.L., Cheresh D.A. Glioblastoma expression of vitronectin and the αvβ3 integrin. Adhesion mechanism for transformed glial cells. J Clin Invest 1991, 88:1924-1932.
Desgrosellier J.S., Cheresh D.A. Integrins in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer 2010, 10:9-22.
Bai J., Zhang J., Wu J., et al. JWA regulates melanoma metastasis by integrin αvβ3 signaling. Oncogene 2010, 29:1227-1237.
Voura E.B., Ramjeesingh R.A., Montgomery A.M., Siu C.H. Involvement of integrin αvβ3 and cell adhesion molecule L1 in transendothelial migration of melanoma cells. Mol Biol Cell 2001, 12:2699-2710.
Desgrosellier J.S., Barnes L.A., Shields D.J., et al. An integrin αvβ3-c-Src oncogenic unit promotes anchorage-independence and tumor progression. Nat Med 2009, 15:1163-1169.
Berghoff A.S., Rajky O., Winkler F., et al. Invasion patterns in brain metastases of solid cancers. Neuro Oncol 2013, 15:1664-1672.
Berghoff A.S., Kovanda A.K., Melchardt T., et al. αvβ3, αvβ5 and αvβ6 integrins in brain metastases of lung cancer. Clin Exp Metastasis 2014, 31:841-851.
Vonlaufen A., Wiedle G., Borisch B., Birrer S., Luder P., Imhof B.A. Integrin αvβ3 expression in colon carcinoma correlates with survival. Mod Pathol 2001, 14:1126-1132.
Tome Y., Kimura H., Maehara H., et al. High lung-metastatic variant of human osteosarcoma cells, selected by passage of lung metastasis in nude mice, is associated with increased expression of αvβ3 integrin. Anticancer Res 2013, 33:3623-3627.
Leblanc R., Lee S.C., David M., et al. Interaction of platelet-derived autotaxin with tumor integrin αvβ3 controls metastasis of breast cancer cells to bone. Blood 2014, 124:3141-3150.
Schneider J.G., Amend S.R., Weilbaecher K.N. Integrins and bone metastasis: integrating tumor cell and stromal cell interactions. Bone 2011, 48:54-65.
Nakamura I., Duong le T., Rodan S.B., Rodan G.A. Involvement of αvβ3 integrins in osteoclast function. J Bone Miner Metab 2007, 25:337-344.
Teti A., Migliaccio S., Baron R. The role of the αvβ3 integrin in the development of osteolytic bone metastases: a pharmacological target for alternative therapy?. Calcif Tissue Int 2002, 71:293-299.
Abdollahi A., Griggs D.W., Zieher H., et al. Inhibition of αvβ3 integrin survival signaling enhances antiangiogenic and antitumor effects of radiotherapy. Clin Cancer Res 2005, 11:6270-6279.
Seguin L., Kato S., Franovic A., et al. An integrin β3-KRAS-RalB complex drives tumour stemness and resistance to EGFR inhibition. Nat Cell Biol 2014, 16:457-468.
Pearson D.A., Lister J., McBride W.J., et al. Thrombus imaging using technetium-99m-labeled high-potency GPIIb/IIIa receptor antagonists. Chemistry and initial biological studies. J Med Chem 1996, 39:1372-1382.
Haubner R., Wester H.J., Weber W.A., et al. Non invasive imaging of αvβ3 integrin expression using 18F-labeled RGD-containing glycopeptide and positron emission tomography. Cancer Res 2001, 61:1781-1785.
Gaertner F.C., Kessler H., Wester H.J., Schwaiger M., Beer A.J. Radiolabelled RGD peptides for imaging and therapy. Eur J Nucl Med Mol Imaging 2012, 39(Suppl. 1):S126-S138.
Haubner R., Maschauer S., Prante O. PET radiopharmaceuticals for imaging integrin expression: tracers in clinical studies and recent developments. Biomed Res Int 2014, 2014:871609.
Chen X., Tohme M., Park R., Hou Y., Bading J.R., Conti P.S. Micro-PET imaging of αvβ3-integrin expression with 18F-labeled dimeric RGD peptide. Mol Imaging 2004, 3:96-104.
Haubner R., Kuhnast B., Mang C., et al. [18F]Galacto-RGD: synthesis, radiolabeling, metabolic stability, and radiation dose estimates. Bioconjug Chem 2004, 15:61-69.
Li Z.B., Cai W., Cao Q., et al. 64Cu-labeled tetrameric and octameric RGD peptides for small-animal PET of tumor αvβ3 integrin expression. J Nucl Med 2007, 48:1162-1171.
Wu Z., Li Z.B., Cai W., et al. 18F-labeled mini-PEG spacered RGD dimer (18F-FPRGD2): synthesis and microPET imaging of αvβ3 integrin expression. Eur J Nucl Med Mol Imaging 2007, 34:1823-1831.
Thonon D., Goblet D., Goukens E., et al. Fully automated preparation and conjugation of N-succinimidyl 4-[18F]fluorobenzoate ([18F]SFB) with RGD peptide using a GE FASTlab synthesizer. Mol Imaging Biol 2011, 13:1088-1095.
Wan W., Guo N., Pan D., et al. First experience of 18F-alfatide in lung cancer patients using a new lyophilized kit for rapid radiofluorination. J Nucl Med 2013, 54:691-698.
Nielsen C.H., Kimura R.H., Withofs N., et al. PET imaging of tumor neovascularization in a transgenic mouse model with a novel 64Cu-DOTA-knottin peptide. Cancer Res 2010, 70:9022-9030.
Haubner R., Weber W.A., Beer A.J., et al. Non invasive visualization of the activated αvβ3 integrin in cancer patients by positron emission tomography and [18F]Galacto-RGD. PLoS Med 2005, 2:e70.
Alam I.S., Witney T.H., Tomasi G., et al. Radiolabeled RGD tracer kinetics annotates differential αvβ3 integrin expression linked to cell intrinsic and vessel expression. Mol Imaging Biol 2014, 16:558-566.
Guo N., Lang L., Li W., et al. Quantitative analysis and comparison study of [18F]AlF-NOTA-PRGD2, [18F]FPPRGD2 and [68Ga]Ga-NOTA-PRGD2 using a reference tissue model. PLoS One 2012, 7:e37506.
Zhang X., Xiong Z., Wu Y., et al. Quantitative PET imaging of tumor integrin αvβ3 expression with 18F-FRGD2. J Nucl Med 2006, 47:113-121.
Dumont R.A., Hildebrandt I., Su H., et al. Non invasive imaging of αvβ3 function as a predictor of the antimigratory and antiproliferative effects of dasatinib. Cancer Res 2009, 69:3173-3179.
Morrison M.S., Ricketts S.A., Barnett J., Cuthbertson A., Tessier J., Wedge S.R. Use of a novel Arg-Gly-Asp radioligand, 18F-AH111585, to determine changes in tumor vascularity after antitumor therapy. J Nucl Med 2009, 50:116-122.
Battle M.R., Goggi J.L., Allen L., Barnett J., Morrison M.S. Monitoring tumor response to antiangiogenic sunitinib therapy with 18F-fluciclatide, an 18F-labeled αvβ3-integrin and αvβ5-integrin imaging agent. J Nucl Med 2011, 52:424-430.
Yang M., Gao H., Yan Y., et al. PET imaging of early response to the tyrosine kinase inhibitor ZD4190. Eur J Nucl Med Mol Imaging 2011, 38:1237-1247.
Sun X., Yan Y., Liu S., et al. 18F-FPPRGD2 and 18F-FDG PET of response to Abraxane therapy. J Nucl Med 2011, 52:140-146.
Goggi J.L., Bejot R., Moonshi S.S., Bhakoo K.K. Stratification of 18F-labeled PET imaging agents for the assessment of antiangiogenic therapy responses in tumors. J Nucl Med 2013, 54:1630-1636.
Rylova S.N., Barnucz E., Fani M., et al. Does imaging αvβ3 integrin expression with PET detect changes in angiogenesis during bevacizumab therapy?. J Nucl Med 2014, 55:1878-1884.
Beer A.J., Haubner R., Goebel M., et al. Biodistribution and pharmacokinetics of the αvβ3-selective tracer 18F-galacto-RGD in cancer patients. J Nucl Med 2005, 46:1333-1341.
Mena E., Owenius R., Turkbey B., et al. [18F]Fluciclatide in the in vivo evaluation of human melanoma and renal tumors expressing αvβ3 and αvβ5 integrins. Eur J Nucl Med Mol Imaging 2014, 41:1879-1888.
Kenny L.M., Coombes R.C., Oulie I., et al. Phase I trial of the positron-emitting Arg-Gly-Asp (RGD) peptide radioligand 18F-AH111585 in breast cancer patients. J Nucl Med 2008, 49:879-886.
Beer A.J., Grosu A.L., Carlsen J., et al. [18F]galacto-RGD positron emission tomography for imaging of αvβ3 expression on the neovasculature in patients with squamous cell carcinoma of the head and neck. Clin Cancer Res 2007, 13:6610-6616.
Schnell O., Krebs B., Carlsen J., et al. Imaging of integrin αvβ3 expression in patients with malignant glioma by [18F]Galacto-RGD positron emission tomography. Neuro Oncol 2009, 11:861-870.
Tomasi G., Kenny L., Mauri F., Turkheimer F., Aboagye E.O. Quantification of receptor-ligand binding with [18F]fluciclatide in metastatic breast cancer patients. Eur J Nucl Med Mol Imaging 2011, 38:2186-2197.
Minamimoto R., Jamali M., Barkhodari A., et al. Biodistribution of the 18F-FPPRGD2 PET radiopharmaceutical in cancer patients: an atlas of SUV measurements. Eur J Nucl Med Mol Imaging 2015, 42:1850-1858.
Lohi J., Leivo I., Franssila K., Virtanen I. Changes in the distribution of integrins and their basement membrane ligands during development of human thyroid follicular epithelium. Histochem J 1997, 29:337-345.
Vitale M., Bassi V., Fenzi G., Macchia P.E., Salzano S., Rossi G. Integrin expression in thyroid cells from normal glands and nodular goiters. J Clin Endocrinol Metab 1993, 76:1575-1579.
Bergh J.J., Lin H.Y., Lansing L., et al. Integrin αvβ3 contains a cell surface receptor site for thyroid hormone that is linked to activation of mitogen-activated protein kinase and induction of angiogenesis. Endocrinology 2005, 146:2864-2871.
Davis F.B., Tang H.Y., Shih A., et al. Acting via a cell surface receptor, thyroid hormone is a growth factor for glioma cells. Cancer Res 2006, 66:7270-7275.
Lin H.Y., Tang H.Y., Shih A., et al. Thyroid hormone is a MAPK-dependent growth factor for thyroid cancer cells and is anti-apoptotic. Steroids 2007, 72:180-187.
Cohen K., Ellis M., Khoury S., Davis P.J., Hercbergs A., Ashur-Fabian O. Thyroid hormone is a MAPK-dependent growth factor for human myeloma cells acting via αvβ3 integrin. Mol Cancer Res 2011, 9:1385-1394.
Cohen K., Ellis M., Shinderman E., et al. Relevance of the thyroid hormones-αvβ3 pathway in primary myeloma bone marrow cells and to bortezomib action. Leuk Lymphoma 2015, 56:1107-1114.
Rabb H., Barroso-Vicens E., Adams R., Pow-Sang J., Ramirez G. αvβ3 and αvβ5 integrin distribution in neoplastic kidney. Am J Nephrol 1996, 16:402-408.
Beer A.J., Haubner R., Sarbia M., et al. Positron emission tomography using [18F]Galacto-RGD identifies the level of integrin αvβ3 expression in man. Clin Cancer Res 2006, 12:3942-3949.
Cho H., Lee J., Park J., et al. First in human evaluation of a newly developed integrin binding PET tracer, 18F-RGD-K5 in patients with breast cancer: comparison with 18F-FDG uptake pattern and microvessel density. J Nucl Med 2009, 50:1910.
Withofs N., Signolle N., Somja J., et al. 18F-FPRGD2 PET/CT imaging of integrin αvβ3 in renal carcinomas: correlation with histopathology. J Nucl Med 2015, 56:361-364.
Gao S., Wu H., Li W., et al. A pilot study imaging integrin αvβ3 with RGD PET/CT in suspected lung cancer patients. Eur J Nucl Med Mol Imaging 2015, 42:2029-2037.
Withofs N., Charlier E., Simoni P., et al. 18F-FPRGD2 PET/CT imaging of musculoskeletal disorders. Ann Nucl Med 2015, [Epub ahead of print].
Withofs N., Martinive P., Vanderick J., et al. [18F]FPRGD2 PET/CT imaging of integrin αvβ3 levels in patients with locally advanced rectal carcinoma. Eur J Nucl Med Mol Imaging 2015, [Epub ahead of print].
Beer A.J., Lorenzen S., Metz S., et al. Comparison of integrin αvβ3 expression and glucose metabolism in primary and metastatic lesions in cancer patients: a PET study using 18F-galacto-RGD and 18F-FDG. J Nucl Med 2008, 49:22-29.
Iagaru A., Mosci C., Shen B., et al. 18F-FPPRGD2 PET/CT: pilot phase evaluation of breast cancer patients. Radiology 2014, 273:549-559.
Metz S., Ganter C., Lorenzen S., et al. Phenotyping of tumor biology in patients by multimodality multiparametric imaging: relationship of microcirculation, αvβ3 expression, and glucose metabolism. J Nucl Med 2010, 51:1691-1698.
Yoon H.J., Kang K.W., Chun I.K., et al. Correlation of breast cancer subtypes, based on estrogen receptor, progesterone receptor, and HER2, with functional imaging parameters from 68Ga-RGD PET/CT and 18F-FDG PET/CT. Eur J Nucl Med Mol Imaging 2014, 41:1534-1543.
Chen C., Pore N., Behrooz A., Ismail-Beigi F., Maity A. Regulation of glut1 mRNA by hypoxia-inducible factor-1. Interaction between H-ras and hypoxia. J Biol Chem 2001, 276:9519-9525.
Alvarez J.V., Belka G.K., Pan T.C., et al. Oncogene pathway activation in mammary tumors dictates FDG-PET uptake. Cancer Res 2014, 74:7583-7598.
Skuli N., Monferran S., Delmas C., et al. αvβ3/αvβ5 integrins-FAK-RhoB: a novel pathway for hypoxia regulation in glioblastoma. Cancer Res 2009, 69:3308-3316.
Seshadri R., Firgaira F.A., Horsfall D.J., McCaul K., Setlur V., Kitchen P., et al. Clinical significance of HER-2/neu oncogene amplification in primary breast cancer. J Clin Oncol 1993, 11:1936-1942.
Wang H., Jin H., Beauvais D.M., Rapraeger A.C. Cytoplasmic domain interactions of syndecan-1 and syndecan-4 with α6β4 integrin mediate human epidermal growth factor receptor (HER1 and HER2)-dependent motility and survival. J Biol Chem 2014, 289:30318-30332.
Jiang L., Tu Y., Kimura R.H., et al. 64Cu-labeled divalent cystine knot peptide for imaging carotid atherosclerotic plaques. J Nucl Med 2015, 56:939-944.
Sun Y., Zeng Y., Zhu Y., et al. Application of 68Ga-PRGD2 PET/CT for αvβ3-integrin imaging of myocardial infarction and stroke. Theranostics 2014, 4:778-786.
Jaipersad A.S., Lip G.Y., Silverman S., Shantsila E. The role of monocytes in angiogenesis and atherosclerosis. J Am Coll Cardiol 2014, 63:1-11.
Beer A.J., Pelisek J., Heider P., et al. PET/CT Imaging of Integrin αvβ3 expression in human carotid atherosclerosis. JACC Cardiovasc Imaging 2014, 7:178-187.
Golestani R., Mirfeizi L., Zeebregts C.J., et al. Feasibility of [18F]-RGD for ex vivo imaging of atherosclerosis in detection of αvβ3 integrin expression. J Nucl Cardiol 2015.
Su H., Gorodny N., Gomez L.F., et al. Atherosclerotic plaque uptake of a novel integrin tracer 18F-Flotegatide in a mouse model of atherosclerosis. J Nucl Cardiol 2014, 21:553-562.
Laitinen I., Saraste A., Weidl E., et al. Evaluation of αvβ3 integrin-targeted positron emission tomography tracer 18F-galacto-RGD for imaging of vascular inflammation in atherosclerotic mice. Circ Cardiovasc Imaging 2009, 2:331-338.
Johanna H., Iina L., Pauliina L., et al. 68Ga-DOTA-RGD peptide: biodistribution and binding into atherosclerotic plaques in mice. Eur J Nucl Med Mol Imaging 2009, 36:2058-2067.
Kitagawa T., Kosuge H., Chang E., et al. Integrin-targeted molecular imaging of experimental abdominal aortic aneurysms by 18F-labeled Arg-Gly-Asp positron-emission tomography. Circ Cardiovasc Imaging 2013, 6:950-956.
Tegler G., Estrada S., Hall H., et al. Autoradiography screening of potential positron emission tomography tracers for asymptomatic abdominal aortic aneurysms. Ups J Med Sci 2014, 119:229-235.
van den Borne S.W., Isobe S., Verjans J.W., et al. Molecular imaging of interstitial alterations in remodeling myocardium after myocardial infarction. J Am Coll Cardiol 2008, 52:2017-2028.
Kim Y.I., Phi J.H., Paeng J.C., et al. In vivo evaluation of angiogenic activity and its correlation with efficacy of indirect revascularization surgery in pediatric moyamoya disease. J Nucl Med 2014, 55:1467-1472.
Choi H., Phi J.H., Paeng J.C., et al. Imaging of integrin αvβ3 expression using 68Ga-RGD positron emission tomography in pediatric cerebral infarct. Mol Imaging 2013, 12:213-217.
Fischer D.R. Musculoskeletal imaging using fluoride PET. Semin Nucl Med 2013, 43:427-433.
Carey K., Saboury B., Basu S., et al. Evolving role of FDG PET imaging in assessing joint disorders: a systematic review. Eur J Nucl Med Mol Imaging 2011, 38:1939-1955.
Loeser R.F. Integrins and chondrocyte-matrix interactions in articular cartilage. Matrix Biol 2014, 39:11-16.
Wilder R.L. Integrin αvβ3 as a target for treatment of rheumatoid arthritis and related rheumatic diseases. Ann Rheum Dis 2002, 61:ii96-ii99.
Lowin T., Straub R.H. Integrins and their ligands in rheumatoid arthritis. Arthritis Res Ther 2011, 13:244.
Zhu Z., Yin Y., Zheng K., et al. Evaluation of synovial angiogenesis in patients with rheumatoid arthritis using 68Ga-PRGD2 PET/CT: a prospective proof-of-concept cohort study. Ann Rheum Dis 2014, 73:1269-1272.
Lainer-Carr D., Brahn E. Angiogenesis inhibition as a therapeutic approach for inflammatory synovitis. Nat Clin Pract Rheumatol 2007, 3:434-442.
Zheleznyak A., Wadas T.J., Sherman C.D., et al. Integrin αvβ3 as a PET imaging biomarker for osteoclast number in mouse models of negative and positive osteoclast regulation. Mol Imaging Biol 2012, 14:500-508.
Wadas T.J., Deng H., Sprague J.E., Zheleznyak A., Weilbaecher K.N., Anderson C.J. Targeting the αvβ3 integrin for small-animal PET/CT of osteolytic bone metastases. J Nucl Med 2009, 50:1873-1880.
Sprague J.E., Kitaura H., Zou W., et al. Noninvasive imaging of osteoclasts in parathyroid hormone-induced osteolysis using a 64Cu-labeled RGD peptide. J Nucl Med 2007, 48:311-318.
Shattil S.J., Kim C., Ginsberg M.H. The final steps of integrin activation: the end game. Nat Rev Mol Cell Biol 2010, 11:288-300.
van Beijnum J.R., Nowak-Sliwinska P., Huijbers E.J., Thijssen V.L., Griffioen A.W. The great escape, the hallmarks of resistance to antiangiogenic therapy. Pharmacol Rev 2015, 67:441-461.
Gacche R.N. Compensatory angiogenesis and tumor refractoriness. Oncogenesis 2015, 4:e153.