[en] Superconducting nanowires currently attract great interest due to their application in
single-photon detectors and quantum-computing circuits. In this context, it is of fundamental
importance to understand the detrimental fluctuations of the superconducting order
parameter as the wire width shrinks. In this paper, we use controlled electromigration to
narrow down aluminium nanoconstrictions. We demonstrate that a transition from thermally
assisted phase slips to quantum phase slips takes place when the cross section becomes less
than 150 nm2 . In the regime dominated by quantum phase slips the nanowire loses its
capacity to carry current without dissipation, even at the lowest possible temperature. We
also show that the constrictions exhibit a negative magnetoresistance at low-magnetic fields,
which can be attributed to the suppression of superconductivity in the contact leads. These
findings reveal perspectives of the proposed fabrication method for exploring various
fascinating superconducting phenomena in atomic-size contacts.
Disciplines :
Physics
Author, co-author :
Baumans, Xavier ; Université de Liège > Département de physique > Physique expérimentale des matériaux nanostructurés
Cerbu, Dorin; Katholieke Universiteit Leuven - KUL > Physics and Astronomy > Institute for Nanoscale Physics and Chemistry
Adami, Obaïd-Allah ; Université de Liège > Département de physique > Physique expérimentale des matériaux nanostructurés
Zharinov, Vyacheslav; Katholieke Universiteit Leuven - KUL > Physics and Astronomy > Institute for Nanoscale Physics and Chemistry
Verellen, Niels; Katholieke Universiteit Leuven - KUL > Physics and Astronomy > Institute for Nanoscale Physics and Chemistry
Papari, Gianpaolo; University Federico II of Naples > Physics
Scheerder, Jeroen; Katholieke Universiteit Leuven - KUL > Physics and Astronomy > Institute for Nanoscale Physics and Chemistry
Zhang, Gufei; Katholieke Universiteit Leuven - KUL > Physics and Astronomy > Institute for Nanoscale Physics and Chemistry
Moshchalkov, Victor; Katholieke Universiteit Leuven - KUL > Physics and Astronomy > Institute for Nanoscale Physics and Chemistry
Silhanek, Alejandro ; Université de Liège > Département de physique > Physique expérimentale des matériaux nanostructurés
Van de Vondel, Joris; Katholieke Universiteit Leuven - KUL > Physics and Astronomy > Institute for Nanoscale Physics and Chemistry
Language :
English
Title :
Thermal and quantum depletion of superconductivity in narrow junctions created by controlled electromigration
F.R.S.-FNRS - Fonds de la Recherche Scientifique ULiège - Université de Liège Methusalem Funding of the Flemish Government FWO - Fonds Wetenschappelijk Onderzoek Vlaanderen NanoSC - COST Action MP1201 Mandat d’Impulsion Scientifique (MIS F.4527.13)
Roduner, E. Size matters: why nanomaterials are different. Chem. Soc. Rev. 35, 583-592 (2006).
Zhang, L.-F., Covaci, L., Milosević, M. V., Berdiyorov, G. R., Peeters, F. M. Unconventional vortex states in nanoscale superconductors due to shapeinduced resonances in the inhomogeneous cooper-pair condensate. Phys. Rev. Lett. 109, 107001 (2012).
Moshchalkov, V. et al. Effect of sample topology on the critical fields od mesoscopic superconductors. Nature 373, 319-322 (1995).
Shanenko, A. A., Croitoru, M. D., Zgirski, M., Peeters, F. M., Arutyunov, K. Size-dependent enhancement of superconductivity in Al and Sn nanowires: shape-resonance effect. Phys. Rev. B 74, 052502 (2006).
Halder, A., Liang, A., Kresin, V. V. A novel feature in aluminum cluster photoionization spectra and possibility of electron pairing at T greater than or similar to 100K. Nano Lett. 15, 1410-1413 (2015).
Haviland, D. B., Liu, Y., Goldman, A. M. Onset of superconductivity in the two-dimensional limit. Phys. Rev. Lett. 62, 2180-2183 (1989).
Bezryadin, A., Lau, C. N., Tinkham, M. Quantum suppression of superconductivity in ultrathin nanowires. Nature 404, 971-974 (2000).
Golubev, D. S., Zaikin, A. D. Quantum tunneling of the order parameter in superconducting nanowires. Phys. Rev. B 64, 014504 (2001).
Lau, C., Markovic, N., Bockrath, M., Bezryadin, A., Tinkham, M. Quantum phase slips in superconducting nanowires. Phys. Rev. Lett. 87, 217003 (2001).
Chen, Y., Lin, Y.-H., Snyder, S. D., Goldman, A. M., Kamenev, A. Dissipative superconducting state of non-equilibrium nanowires. Nat. Phys. 10, 567-571 (2014).
Langer, J. S., Ambegaokar, V. Intrinsic resistive transition in narrow superconducting channels. Phys. Rev. 164, 498-510 (1967).
McCumber, D. E., Halperin, B. I. Time scale of intrinsic resistive fluctuations in thin superconducting wires. Phys. Rev. B 1, 1054-1070 (1970).
Zgirski, M., Riikonen, K., Touboltsev, V., Arutyunov, K. Size dependent breakdown of superconductivity in ultranarrow nanowires. Nano Lett. 5, 1029-1033 (2005).
Bezryadin, A., Goldbart, P. M. Superconducting nanowires fabricated using molecular templates. Adv. Mater. 22, 1111-1121 (2010).
Morgan-Wall, T., Hughes, H. J., Hartman, N., McQueen, T. M., Markovic, N. Fabrication of sub-15 nm aluminum wires by controlled etching. Appl. Phys. Lett. 104, 173101 (2014).
Ho, P. S., Kwok, T. Electromigration in metals. Rep. Prog. Phys. 52, 301 (1989).
Park, H., Lim, A., Alivisatos, A., Park, J., McEuen, P. Fabrication of metallic electrodes with nanometer separation by electromigration. Appl. Phys. Lett. 75, 301-303 (1999).
Strachan, D. R. et al. Controlled fabrication of nanogaps in ambient environment for molecular electronics. Appl. Phys. Lett. 86, 043109 (2005).
Vodolazov, D. Y., Peeters, F. M. Enhancement of the retrapping current of superconducting microbridges of finite length. Phys. Rev. B 85, 024508 (2012).
Campbell, J. M., Knobel, R. G. Feedback-controlled electromigration for the fabrication of point contacts. Appl. Phys. Lett. 102, 023105 (2013).
Romijn, J., Klapwijk, T. M., Renne, M. J., Mooij, J. E. Critical pair-breaking current in superconducting aluminum strips far below Tc. Phys. Rev. B 26, 3648-3655 (1982).
Fickett, F. R. Aluminum1. A review of resistive mechanisms in aluminum. Cryogenics 11, 349-367 (1971).
Esen, G., Fuhrer, M. S. Temperature control of electromigration to form gold nanogap junctions. Appl. Phys. Lett. 87, 263101 (2005).
Trouwborst, M. L., Molen, S. J. v. d., Wees, B. J. v. The role of Joule heating in the formation of nanogaps by electromigration. J. Appl. Phys. 99, 114316 (2006).
Moshchalkov, V. V. et al. Superconductivity in Networks and Mesoscopic Systems (AIP, 1998).
Strunk, C. et al. Nonlocal effects in mesoscopic superconducting aluminum structures. Phys. Rev. B 54, R12701-R12704 (1996).
Zgirski, M., Riikonen, K.-P., Touboltsev, V., Arutyunov, K. Y. Quantum fluctuations in ultranarrow superconducting aluminum nanowires. Phys. Rev. B 77, 054508 (2008).
Zgirski, M., Arutyunov, K. Y. Experimental limits of the observation of thermally activated phase-slip mechanism in superconducting nanowires. Phys. Rev. B 75, 172509 (2007).
Bae, M.-H., Dinsmore, R. C., Aref, T., Brenner, M., Bezryadin, A. Currentphase relationship, thermal and quantum phase slips in superconducting nanowires made on a scaffold created using adhesive tape. Nano Lett. 9, 1889-1896 (2009).
Newbower, R. S., Beasley, M. R., Tinkham, M. Fluctuation effects on the superconducting transition of tin whisker crystals. Phys. Rev. B 5, 864-868 (1972).
Giordano, N. Evidence for macroscopic quantum tunneling in one-dimensional superconductors. Phys. Rev. Lett. 61, 2137-2140 (1988).
Altomare, F., Chang, A. M., Melloch, M. R., Hong, Y., Tu, C. W. Evidence for macroscopic quantum tunneling of phase slips in long one-dimensional superconducting Al wires. Phys. Rev. Lett. 97, 017001 (2006).
Vodolazov, D. Y. Negative magnetoresistance and phase slip process in superconducting nanowires. Phys. Rev. B 75, 184517 (2007).
Schmid, A., Schön, G. Linearized kinetic equations and relaxation processes of a superconductor near Tc. J. Low Temp. Phys. 20, 207-227 (1975).
Arutyunov, K. Y. Negative magnetoresistance of ultra-narrow superconducting nanowires in the resistive state. Phys. C 468, 272-275 (2008).
Chen, Y., Snyder, S. D., Goldman, A. M. Magnetic-field-induced superconducting state in Zn nanowires driven in the normal state by an electric current. Phys. Rev. Lett. 103, 127002 (2009).
Chen, Y., Lin, Y.-H., Snyder, S. D., Goldman, A. M. Stabilization of superconductivity by magnetic field in out-of-equilibrium nanowires. Phys. Rev. B 83, 054505 (2011).
Golikova, T. E. et al. Nonlocal supercurrent in mesoscopic multiterminal SNS Josephson junction in the low-temperature limit. Phys. Rev. B 89, 104507 (2014).
Hubler, F., Lemyre, J. C., Beckmann, D., Lohneysen, H. Charge imbalance in superconductors in the low-temperature limit. Phys. Rev. B 81, 184524 (2010).
Dolan, G. J., Jackel, L. D. Voltage measurements within the nonequilibrium region near phase-slip centers. Phys. Rev. Lett. 39, 1628-1631 (1977).
Zaikin, A. D., Golubev, D. S., van Otterlo, A., Zimanyi, G. T. Quantum fluctuations and dissipation in thin superconducting wires. Phys. Usp. 41, 226-230 (1998).
Buchler, H. P., Geshkenbein, V. B., Blatter, G. Quantum fluctuations in thin superconducting wires of finite length. Phys. Rev. Lett. 92, 067007 (2004).
Schon, G., Zaikin, A. D. Quantum coherent effects, phase transitions, and the dissipative dynamics of ultra small tunnel junctions. Phys. Rep. 198, 237-412 (1990).
Penttila, J. S., Parts, U., Hakonen, P. J., Paalanen, M. A., Sonin, E. B. 'Superconductor-Insulator Transition' in a single josephson junction. Phys. Rev. Lett. 82, 1004-1007 (1999).