Paper published in a book (Scientific congresses and symposiums)
Evolving Temporal Association Rules with Genetic Algorithms
Matthews, Stephen G.; Gongora, Mario A.; Hopgood, Adrian
2011In Bramer, Max; Petridis, Miltos; Hopgood, Adrian (Eds.) Research and Development in Intelligent Systems XXVII: Incorporating Applications and Innovations in Intelligent Systems XVIII Proceedings of AI-2010, The Thirtieth SGAI International Conference on Innovative Techniques and Applications of Artificial Intelligence
Peer reviewed
 

Files


Full Text
AI2010download.pdf
Publisher postprint (137.77 kB)
Request a copy

All documents in ORBi are protected by a user license.

Send to



Details



Abstract :
[en] A novel framework for mining temporal association rules by discovering itemsets with a genetic algorithm is introduced. Metaheuristics have been applied to association rule mining, we show the efficacy of extending this to another variant - temporal association rule mining. Our framework is an enhancement to existing temporal association rule mining methods as it employs a genetic algorithm to simultaneously search the rule space and temporal space. A methodology for validating the ability of the proposed framework isolates target temporal itemsets in synthetic datasets. The Iterative Rule Learning method successfully discovers these targets in datasets with varying levels of difficulty.
Disciplines :
Computer science
Author, co-author :
Matthews, Stephen G.
Gongora, Mario A.
Hopgood, Adrian ;  Université de Liège > HEC - Ecole de gestion de l'ULG : Direction générale
Language :
English
Title :
Evolving Temporal Association Rules with Genetic Algorithms
Publication date :
2011
Event name :
AI-2010: 30th SGAI International Conference on Artificial Intelligence
Event place :
Cambridge, United Kingdom
Event date :
14-16 Dec. 2010
Main work title :
Research and Development in Intelligent Systems XXVII: Incorporating Applications and Innovations in Intelligent Systems XVIII Proceedings of AI-2010, The Thirtieth SGAI International Conference on Innovative Techniques and Applications of Artificial Intelligence
Editor :
Bramer, Max
Petridis, Miltos
Hopgood, Adrian ;  Université de Liège - ULiège > HEC Liège : UER > UER Opérations
Publisher :
Springer London, London, United Kingdom
ISBN/EAN :
978-0-85729-130-1
Pages :
107-120
Peer reviewed :
Peer reviewed
Available on ORBi :
since 11 February 2016

Statistics


Number of views
40 (1 by ULiège)
Number of downloads
0 (0 by ULiège)

Scopus citations®
 
9
Scopus citations®
without self-citations
6
OpenCitations
 
2
OpenAlex citations
 
12

Bibliography


Similar publications



Contact ORBi