multi-objective evolutionary algorithm; fuzzy association rules; temporal association rules; NSGA-II; hyrbid
Abstract :
[en] A novel method for mining association rules that are both quantitative and temporal using a multi-objective evolutionary algorithm is presented. This method successfully identifies numerous temporal association rules that occur more frequently in areas of a dataset with specific quantitative values represented with fuzzy sets. The novelty of this research lies in exploring the composition of quantitative and temporal fuzzy association rules and the approach of using a hybridisation of a multi-objective evolutionary algorithm with fuzzy sets. Results show the ability of a multi-objective evolutionary algorithm (NSGA-II) to evolve multiple target itemsets that have been augmented into synthetic datasets.
Disciplines :
Computer science
Author, co-author :
Matthews, Stephen G.; De Montfort Univ, Ctr Computat Intelligence, Leicester LE1 9BH, Leics, England.
Gongora, Mario A.; De Montfort Univ, Ctr Computat Intelligence, Leicester LE1 9BH, Leics, England.
Hopgood, Adrian ; Université de Liège > HEC - Ecole de gestion de l'ULG : Direction générale
Language :
English
Title :
Evolving Temporal Fuzzy Association Rules from Quantitative Data with a Multi-Objective Evolutionary Algorithm
Publication date :
2011
Event name :
6th International Conference on Hybrid Artificial Intelligence Systems (HAIS 2011)
Event organizer :
Wroclaw Univ Technol, IEEE Systems, Man & Cybernet Soc, Spanish Chapter, IEEE Systems, Man & Cybernet Soc, Czech Republ Chapter, Spanish Assoc Artificial Intelligence, MIR LABS, Int Federat Computat Logic
Event place :
Wroclaw Univ Technol, Wroclaw, Poland
Event date :
MAY 23-25, 2011
Audience :
International
Journal title :
Lecture Notes in Computer Science
ISSN :
0302-9743
eISSN :
1611-3349
Publisher :
Springer-Verlag Berlin, Berlin, Germany
Special issue title :
HYBRID ARTIFICIAL INTELLIGENT SYSTEMS, PART I
Volume :
6678
Pages :
198-205
Peer reviewed :
Peer reviewed
Commentary :
978-3-642-21218-5
Wroclaw Univ Technol
Corchado, E Kurzynski, M Wozniak, M
Agrawal, R., Imieliński, T., Swami, A.: Mining association rules between sets of items in large databases. In: ACM SIGMOD ICDM, Washington, DC, USA, pp. 207-216 (1993)
Leonard, D.: After Katrina: Crisis Management, the Only Lifeline Was the Wal-Mart. FORTUNE Magazine (2005)
Srikant, R., Agrawal, R.: Mining quantitative association rules in large relational tables. In: ACM SIGMOD ICDM, Montreal, Quebec, Canada, pp. 1-12 (1996)
Ishibuchi, H.: Multiobjective Genetic Fuzzy Systems: Review and Future Research Directions Fuzzy Systems Conference. In: FUZZ-IEEE, London, UK, pp. 1-6 (2007)
Corchado, E., Abraham, A., de Carvalho, A.: Hybrid intelligent algorithms and applications. Information Sciences 180(14), 2633-2634 (2010)
Matthews, S.G., Gongora, M.A., Hopgood, A.A.: Evolving Temporal Association Rules with Genetic Algorithms. In: Bramer, M., Petridis, M., Hopgood, A. (eds.) Research and Development in Intelligent Systems XXVII, pp. 107-120. Springer, London (2010)
Matthews, S.G., Gongora, M.A., Hopgood, A.A.: Evolving Temporal Fuzzy Itemsets from Quantitative Data with a Multi-Objective Evolutionary Algorithm. In: IEEE SSCI, Paris, France, (accepted for publication 2011)
Mata, J., Alvarez, J.L., Riquelme, J.C.: An evolutionary algorithm to discover numeric association rules. In: ACM SAC, New York, NY, USA, pp. 590-594 (2002)
Kaya, M.: Multi-objective genetic algorithm based approaches for mining optimized fuzzy association rules. Soft Computing - A Fusion of Foundations, Methodologies and Applications 10(7), 578-586 (2006)
Hong, T.-P., Chen, C.-H., Lee, Y.-C., Wu, Y.-L.: Genetic-Fuzzy Data Mining With Divide-and-Conquer Strategy. IEEE Transactions on Evolutionary Computation 12(2), 252-265 (2008)
Ale, J.M., Rossi, G.H.: An approach to discovering temporal association rules. In: ACM SAC, Como, Italy, pp. 294-300 (2000)
Özden, B., Ramaswamy, S., Silberschatz, A.: Cyclic Association Rules. In: ICDE, Washington, DC, USA, pp. 412-421 (1998)
Han, J., Gong, W., Yin, Y.: Mining segment-wise periodic patterns in time-related databases. In: KDD, New York, NY, USA, pp. 214-218 (1998)
Li, Y., Ning, P., Wang, X.S., Jajodia, S.: Discovering calendar-based temporal association rules. Data & Knowledge Engineering 44(2), 193-218 (2003)
Coello, C.A.C., Lamont, G.B., van Veldhuizen, D.A.: Evolutionary Algorithms for Solving Multi-Objective Problems. Springer, Heidelberg (2007)
Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6(2), 182-197 (2002)
Carmona, C., Gonzalez, P., del Jesus, M., Herrera, F.: NMEEF-SD: Non-dominated Multiobjective Evolutionary Algorithm for Extracting Fuzzy Rules in Subgroup Discovery. IEEE Transactions on Fuzzy Systems 18(5), 958-970 (2010)
Kaya, M.: MOGAMOD: Multi-objective genetic algorithm for motif discovery. Expert Systems with Applications 36(2, Part 1), 1039-1047 (2009)
Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: VLDB, Santiago, Chile, pp. 487-499 (1994)