directional solidification; microporosity; LiMaRC - Liège Materials Research Center
Abstract :
[en] The aim of this experiment was to study the origin and formation of microporosities in a Ni-5% Ti-0.2% C alloy which has been solidified and quenched, and to compare it to the previously developed mathematical model. In the selected alloy, the porosity may result from gases formed during solidification (for example by chemical reaction). The results show that solidification conditions influence microporosity formation through the fraction eutectic and this suggests that it is possible to relate susceptibility to microporosity formation to the fraction eutectic. The results also confirm that for solid solution alloys such as Ni-5% Ti0.2% C, the fraction eutectic increases when the ratio G/R decreases.
Disciplines :
Materials science & engineering
Author, co-author :
Daoxin, J.
Lecomte-Beckers, Jacqueline ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Science des matériaux métalliques
Language :
English
Title :
Research regarding the formation of micropores in a Ni-Ti-C alloy during directional solidification under vacuum
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.