[en] Abstract In 2002 (February) and 2005 (August), the full suite of carbonate system parameters (total alkalinity (AT), dissolved inorganic carbon (DIC), pH, and partial pressure of \{CO2\} (pCO2) were measured on two re-occupations of the entire North Sea basin, with three parameters (AT, DIC, pCO2) measured on four additional re-occupations, covering all four seasons, allowing an assessment of the internal consistency of the carbonate system. For most of the year, there is a similar level of internal consistency, with \{AT\} being calculated to within ± 6 μmol kg− 1 using \{DIC\} and pH, \{DIC\} to ± 6 μmol kg− 1 using \{AT\} and pH, pH to ± 0.008 using \{AT\} and pCO2, and pCO2 to ± 8 μatm using \{DIC\} and pH, with the dissociation constants of Millero et al. (2006). In spring, however, we observe a significant decline in the ability to accurately calculate the carbonate system. Lower consistency is observed with an increasing fraction of Baltic Sea water, caused by the high contribution of organic alkalinity in this water mass, not accounted for in the carbonate system calculations. Attempts to improve the internal consistency by accounting for the unconventional salinity–borate relationships in freshwater and the Baltic Sea, and through application of the new North Atlantic salinity–boron relationship (Lee et al., 2010), resulted in no significant difference in the internal consistency.
Research Center/Unit :
FOCUS - Freshwater and OCeanic science Unit of reSearch - ULiège
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Abril G., Bouillon S., Darchambeau F., Teodoru C.R., Marwick T.R., Tamooh F., Omengo F.O., Geeraert N., Deirmendjian L., Polsenaere P., Borges A.V. Technical note: large overestimation of pCO2 calculated from pH and alkalinity in acidic, organic-rich freshwaters. Biogeosciences 2015, 12(1):67-78.
Amann T., Weiss A., Hartmann J. Carbon dynamics in the freshwater part of the Elbe estuary, Germany: implications of improving water quality. Estuar. Coast. Shelf Sci. 2012, 107:112-121.
Barth S. 11B/10B variations of dissolved boron in a freshwater-seawater mixing plume (Elbe Estuary, North Sea). Mar. Chem. 1998, 62:1-14.
Borges A.V., Gypens N. Carbonate chemistry in the coastal zone responds more strongly to eutrophication than to ocean acidification. Limnol. Oceanogr. 2010, 55:346-353.
Bozec Y., Thomas H., Elkalay K., de Baar H.J.W. The continental shelf pump for CO2 in the North Sea-evidence from summer observation. Mar. Chem. 2005, 93:131-147.
Bozec Y., Thomas H., Schiettecatte L.-S., Borges A.V., Elkalay K., de Baar H.J.W. Assessment of the processes controlling seasonal variations of dissolved inorganic carbon in the North Sea. Limnol. Oceanogr. 2006, 51:2,746-2,762.
Burkill P.H., Archer S.D., Robinson C., Nightingale P.D., Groom S.B., Tarran G.A., Zubkov M.V. Dimethyl sulphide biogeochemistry within a coccolithophore bloom (DISCO): an overview. Deep Sea Res. II 2002, 49:2,863-2,885.
Caldeira K., Wickett M.E. Anthropogenic carbon and ocean pH. Nature 2003, 425:365.
Caldeira K., Wickett M.E. Ocean model predictions of chemistry changes from carbon dioxide emissions to the atmosphere and ocean. J. Geophys. Res. 2005, 110:C09S04. 10.1029/2004JC002671.
Canadell J.G., Le Quere C., Raupach M.R., Field C.B., Buitenhuis E.T., Ciais P., Conway T.J., Gillett N.P., Houghton R.A., Marland G. Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proc. Natl. Acad. Sci. 2007, 104:18,866-18,870.
Clayton T.D., Byrne R.H., Breland J.A., Feely R.A., Millero F.J., Campbell D.M., Murphy P.P., Lamb M.F. The role of pH measurements in modern oceanic CO2-system characterizations: precision and thermodynamic consistency. Deep-Sea Res. I 1995, 42:411-431.
Dickson A.G. Standard potential of the reaction: AgCl(s)+1/2H2(g) = Ag(s)+HCl(aq), and the standard acidity constant of the ion HSO4- in synthetic seawater from 273.15 to 318.15K. J. Chem. Thermodyn. 1990, 22:113-127.
Dickson A.G. pH buffers for sea water media based on the total hydrogen ion concentration scale. Deep-Sea Res. A 1993, 40:107-118.
Dickson A.G., Riley J. The effect of analytical error on the evaluation of the components of the aquatic carbon-dioxide system. Mar. Chem. 1974, 6:77-85.
Dickson A.G., Millero F.J. A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep-Sea Res. I 1987, 34:1,733-1,743.
Dickson A.G., Sabine C.L., Christian J.R. Guide to best practices for ocean CO2 measurements. PICES Special Publication 3 2007.
Dunne J.P., Sarmiento J.L., Gnanadesikan A. A synthesis of global particle export from the surface ocean and cycling through the ocean interior and on the seafloor. Global Biogeochem. Cycles 2007, 21:GB4006. 10.1029/2006GB002907.
Dyrssen D.W., Uppstrom L.R. The boron/chlorinity ratio in Baltic Sea water. Ambio 1974, 3(1):44-46.
Fabry V.J., Seibel B.A., Feely R.A., Orr J.C. Impacts of ocean acidification on marine fauna and ecosystem processes. ICES J. Mar. Sci. 2008, 65:414-432.
Fraga F., Alvarez Salgado X.A. On the variation of alkalinity during phytoplankton photosynthesis. Cienc. Mar 2005, 31(4):627-639.
Frankignoulle M., Borges A.V. European continental shelf as a significant sink for atmospheric carbon dioxide. Global Biogeochem. Cycles 2001, 15:569-576.
Friis K., Körtzinger A., Wallace D.W.R. The salinity normalization of marine inorganic carbon chemistry data. Geophys. Res. Lett. 2003, 30:1085. 10.1029/2002GL015898.
Goyet C., Poisson A. New determination of carbonic acid dissociation constants in seawater as a function of temperature and salinity. Deep-Sea Res. I 1989, 36:1,635-1,654.
Gran G. Determination of the equivalence point in potentiometric titrations of seawater with hydrochloric acid. Oceanol. Acta 1952, 5:209-218.
Methods of seawater analysis 1983, 125-188. Verlag Chemie GmbH, Weinheim/Deerfield Beach, Florida. K. Grasshof, M. Ehrhardt, K. Kremling (Eds.).
Gripenberg S. On the alkalinity of Baltic waters. ICES J. Mar. Sci. 1960, 26:5-20.
Hansson I. A new set of acidity constants for carbonic acid and boric acid in sea water. Deep-Sea Res. I 1973, 20:461-478.
Hernandez-Ayon J.M., Zirino A., Dickson A.G., Camiro-Vargas T., Valenzuela-Espinoza E. Estimating the contribution of organic bases from microalgae to the titration alkalinity in coastal seawaters. Limnol. Oceanogr. Methods 2007, 5:225-232.
Hoppe C.J.M., Langer G., Rokitta S.D., Wolf-Gladrow D.A., Rost B. Implications of observed inconsistencies in carbonate chemistry measurements for ocean acidification studies. Biogeosciences 2012, 9:2401-2405.
Houghton S.D. Coccolith sedimentation and transport in the North Sea. Mar. Geol. 1991, 99:267-274.
Johnson K.M., Wills K.D., Butler D.B., Johnson W.K., Wong C.S. Coulometric total carbon dioxide analysis for marine studies: maximizing the performance of an automated gas extraction system and coulometric detector. Mar. Chem. 1993, 44:167-187.
Kempe S., Pegler K. Sinks and sources of CO2 in coastal seas: the North Sea. Tellus B 1991, 43:224-235.
Khatiwala S., Primeau F., Hall T. Reconstruction of the history of anthropogenic CO2 concentrations in the ocean. Nature 2009, 462:346-349.
Kim H.-C., Lee K. Significant contribution of dissolved organic matter to seawater alkalinity. Geophys. Res. Lett. 2009, 36:L20603.
Koeve W., Oschlies A. Potential impact of DOC accumulation on fCO2 and carbonate ion computations in ocean acidification experiments. Biogeosciences 2012, 9:3,787-3,798.
Körtzinger A., Thomas H., Schneider B., Gronau N., Mintrop L., Duinker J.C. At-sea intercomparison of two newly designed underway pCO2 systems - encouraging results. Mar. Chem. 1996, 52:133-145.
Körtzinger A., Mintrop L., Wallace D.W.R., Johnson K.M., Neill C., Tilbrook B., Towler P., Inoue H.Y., Ishii M., Shaffer G., Torres Saavedra R.F., Ohtaki E., Yamashita E., Poisson A., Brunet C., Schauer B., Goyet C., Eischeid G. The international at-sea intercomparison of fCO2 systems during the R/V Meteor Cruise 36/1 in the North Atlantic Ocean. Mar. Chem. 2000, 72:171-192.
Kremling K. Untersuchungen uber die chemische Zusammensetzung des Meerwassers der Ostsee II. Fruhjahr 1966. Kieler Meeresforsch. 1967, 26:1-20.
Kremling K. Untersuchungen ueber die chemische Zusammensetzung des Meerwassers aus der Ostsee. Kiel. Meeresforsch. 1972, XXVIII(H.2):99-118.
Le Quéré C., Moriarty R., Andrew R.M., Peters G.P., Ciais P., Friedlingstein P., Jones S.D., Sitch S., Tans P., Arneth A., Boden T.A., Bopp L., Bozec Y., Canadell J.G., Chini L.P., Chevallier F., Cosca C.E., Harris I., Hoppema M., Houghton R.A., House J.I., Jain A.K., Johannessen T., Kato E., Keeling R.F., Kitidis V., Klein Goldeweijk K., Koven C., Landa C.S., Landschützer P., Lenton A., Lima I.D., Marland G., Mathis J.T., Metzl N., Nojiri Y., Olsen A., Ono T., Peng S., Peters W., Pfeil B., Poulter B., Raupach M.R., Regnier P., Rodenbeck C., Saito S., Salisbury J.E., Schuster U., Schwinger J., Seferian R., Segschneider J., Steinhoff T., Stocker B.D., Sutton A.J., Takahashi T., Tilbrook B., van der Werf G.R., Viovy N., Want Y.-P., Wanninkhof R., Wiltshire A., Zeng N. Global carbon budget 2014. Earth Syst. Sci. Data 2015, 7:47-85.
Lee K., Millero F.J., Campbell D.M. The reliability of the thermodynamic constants for the dissociation of carbonic acid in seawater. Mar. Chem. 1996, 55:233-245.
Lee K., Millero F., Wanninkhof R. The carbon dioxide system in the Atlantic Ocean. J. Geophys. Res. 1997, 102:15,693-15,707.
Lee K., Millero F.J., Byrne R.H., Feely R.A., Wanninkhof R. The recommended dissociation constants for carbonic acid in seawater. Geophys. Res. Lett. 2000, 27:229-232.
Lee K., Kim T.W., Byrne R.H., Millero F.J., Feely R.A., Liu Y.M. The universal ratio of boron to chlorinity for the North Pacific and North Atlantic oceans. Geochim. Cosmochim. Acta 2010, 74:1801-1811. 10.1016/j.gca.2009.12.027.
Lewis E.L., Wallace D.W.R. Program developed for CO2 system calculations, ORNL/CDIAC-105. Carbon dioxide information analysis center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge 1998.
Lueker T.J., Dickson A.G., Keeling C.D. Ocean pCO2 calculated from dissolved inorganic carbon, alkalinity, and equations for K1 and K2: validation based on laboratory measurements of CO2 in gas and seawater at equilibrium. Mar. Chem. 2000, 70:105-119.
Mehrbach C., Culberson C.H., Hawley J.E., Pytkowicz R.M. Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnol. Oceanogr. 1973, 18:897-907.
Millero F.J., Byrne R.H., Wanninkhof R., Feely R., Clayton T., Murphy P., Lamb M.F. The internal consistency of CO2 measurements in the equatorial Pacific. Mar. Chem. 1993, 44:269-280.
Millero F.J., Pierrot D., Lee K., Wanninkhof R., Feely R., Sabine C.L., Key R.M., Takahashi T. Dissociation constants for carbonic acid determined from field measurements. Deep-Sea Res. I 2002, 49:1705-1723.
Millero F.J., Graham T.B., Huang F., Bustos-Serrano H., Pierrot D. Dissociation constants of carbonic acid in seawater as a function of salinity and temperature. Mar. Chem. 2006, 100:80-94.
Mojica-Prieto F.J., Millero F.J. The values of pK1 and pK2 for the dissociation of carbonic acid in seawater. Geochim. Cosmochim. Acta 2002, 66:2,529-2,540.
Mosley L.M., Peake B.M., Hunter K.A. Modelling of pH and inorganic carbon speciation in estuaries using the composition of the river and seawater end members. Environ. Model. Softw. 2010, 25:1,658-1,663.
Muller F.L.L., Bleie B. Estimating the organic acid contribution to coastal seawater alkalinity by potentiometric titrations in a closed cell. Anal. Chim. Acta 2008, 619:183-191.
Omar A.M., Olsen A., Johannessen T., Hoppema M., Thomas H., Borges A.V. Spatiotemporal variations of fCO2 in the North Sea. Ocean Sci. 2010, 6:77-89. 10.5194/os-6-77-2010.
Osterroht C. Extraction of dissolved fatty acids from sea water. Fresenius J. Anal. Chem. 1993, 345:773-779.
Otto L., Zimmerman J.T.F., Furnes G.K., Mork M., Saetre R., Becker G. Review of the physical oceanography of the North Sea. Neth. J. Sea Res. 1990, 26:161-238.
Park K.P. Oceanic CO2 System: an evaluation of ten methods of investigation. Limnol. Oceanogr. 1969, 14:179-186.
Provost P., van Heuven S., Soetaert K., Laane R.W.P.M., Middelburg J.J. Seasonal and long-term changes in pH in the Dutch coastal zone. Biogeosciences 2010, 7:3,869-3,878.
Prowe A.E.F., Thomas H., Pätsch J., Kühn W., Bozec Y., Schiettecatte L.-S., Borges A.V., de Baar H.J.W. Mechanisms controlling the air-sea CO2 flux in the North Sea. Cont. Shelf Res. 2009, 29:1801-1808.
Raven J. Ocean acidification due to increasing atmospheric carbon dioxide. Document No. 12/05. R. Soc. Lond. 2005, 60.
Ribas-Ribas M., Rérolle V.M.C., Bakker D.C.E., Kitidis V., Lee G.A., Brown I., Achterberg E.P., Tyrrell T. Intercomparison of carbonate chemistry measurements on a cruise in northwestern European shelf seas. Biogeosciences 2014, 11:4,339-4,355.
Roy R.N., Roy L.N., Vogel K.M., Porter-Moore C., Pearson T., Good C.E., Millero F.J., Campbell D.M. Determination of the ionization constants of carbonic acid in seawater. Mar. Chem. 1993, 44:249-259.
Sabine C.L., Feely R.A., Gruber N., Key R.M., Lee K., Bullister J.L., Wanninkhof R., Wong C.S., Wallace D.W.R., Tilbrook B., Millero F.J., Peng T.-H., Kozyr A., Ono T., Rios A.F. The oceanic sink for Anthropogenic CO2. Science 2004, 305:367-371.
Salt L.A., Thomas H., Prowe F.A.E., Borges A.V., Bozec Y., de Baar H.J.W. Variability of North Sea pH and CO2 in response to North Atlantic Oscillation forcing. J. Geophys. Res. Biogeosci. 2013, 118:1-9. 10.1002/2013JG002306.
Schiettecatte L.-S., Thomas H., Bozec Y., Borges A.V. High temporal coverage of carbon dioxide measurements in the Southern Bight of the North Sea. Mar. Chem. 2007, 106:161-173.
Stedmon C.A., Osburn C.L., Kragh T. Tracing water mass mixing in the Baltic-North Sea transition zone using the optical properties of coloured dissolved organic matter. Estuar. Coast. Shelf Sci. 2010, 87:156-162.
Thomas H., Bozec Y., Elkalay K., de Baar H.J.W. Enhanced open ocean storage of CO2 from shelf sea pumping. Science 2004, 304:1005-1008.
Thomas H., Bozec Y., Elkalay K., de Baar H.J.W., Borges A.V., Schiettecatte L.-S. Controls of the surface water partial pressure of CO2 in the North Sea. Biogeosciences 2005, 2:323-334.
Thomas H., Schiettecatte L.-S., Suykens K., Koné Y.J.M., Shadwick E.H., Prowe A.E.F., Bozec Y., de Baar H.J.W., Borges A.V. Enhanced ocean carbon storage from anaerobic alkalinity generation in coastal sediments. Biogeosciences 2009, 6:267-274.
Ulfsbo A., Kulinski K., Anderson L.G., Turner D.R. Modelling organic alkalinity in the Baltic Sea using a Humic-Pitzer approach. Mar. Chem. 2015, 168:18-26.
Uppström L.R. The boron/chlorinity ratio of deep-sea water from the Pacific Ocean. Deep-Sea Res. 1974, 21:161-162.
van Heuven S., Pierrot D., Lewis E., Wallace D.W.R. MATLAB Program developed for CO2 system calculations. ORNL/CDIAC-105b. Carbon dioxide information analysis center. Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge 2011.
Wanninkhof R., Lewis E., Feely R.A., Millero F.J. The optimal carbonate dissociation constants for determining surface water pCO2 from alkalinity and total inorganic carbon. Mar. Chem. 1999, 65:291-301.
Wolf-Gladrow D.A., Zeebe R.E., Klaas C., Körtzinger A., Dickson A.G. Total alkalinity: the explicit conservative expression and its application to biogeochemical processes. Mar. Chem. 2007, 106:287-300.
Wollast R. Evaluation and comparison of the global carbon cycle in the coastal zone and in the open ocean. The Sea 1998, 213-252. John Wiley & Sons, New York. K.H. Brink, A.R. Robinson (Eds.).
Wootton J.T., Pfister C.A., Forester J.D. Dynamic patterns and ecological impacts of declining ocean pH in a high-resolution multi-year dataset. Proc. Natl Acad. Sci. 2008, 105:18,848-18,853.
Zeebe R.E., Wolf-Gladrow D. CO2 in seawater: equilibrium, kinetics, isotopes 2001, Elsevier, Amsterdam.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.