small angle neutron scattering (SANS); membrane; cyclodextrin; cholesterol
Abstract :
[en] The Small-Angle Neutron Scattering technique (SANS) has been applied to characterize the influence of a randomly methylated β–cyclodextrin (CD), called RAMEB, on dimyristoylphosphatidylcholine (DMPC) liposomes doped with cholesterol. From the modelling of the experimental neutron scattering crosssections, the detailed response of the vesicle structure upon addition of increasing amounts of RAMEB up to 30 mM has been assessed. This study has been performed below and above the DMPC bilayer phase transition temperature and shows that cholesterol extraction by RAMEB is linked to a decrease of the average radius and of the aggregation number of the vesicles. This extraction takes place in a dose-dependent way until a more monodisperse population of cholesterol-free liposomes was obtained. In addition, the bilayer thickness evolution was inferred, as well as the liposome coverage by RAMEB.
Research Center/Unit :
Molecular Dynamics Laboratory
Disciplines :
Chemistry
Author, co-author :
Joset, Arnaud ; Université de Liège > Centre d'études et de rech. sur les macromolécules (CERM)
Grammenos, Angeliki
Hoebeke, Maryse ; Université de Liège > Département de physique > Spectroscopie biomédicale
Leyh, Bernard ; Université de Liège > Département de chimie (sciences) > Laboratoire de dynamique moléculaire
Language :
English
Title :
Small-Angle Neutron Scattering investigation of cholesterol-doped DMPC liposomes interacting with β-cyclodextrin
Publication date :
January 2016
Journal title :
Journal of Inclusion Phenomena and Macrocyclic Chemistry
ISSN :
1388-3127
eISSN :
1573-1111
Publisher :
Springer
Volume :
84
Issue :
1
Pages :
153-161
Peer reviewed :
Peer reviewed
Funders :
the NMI3 network funded by the European Commission
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Loftsson, T., Brewster, M.E.: Pharmaceutical applications of cyclodextrins.
Drug solubilization and stabilization. J. Pharm. Sci. 85(10), 1017-1025 (1996). doi:10.1021/js950534b
Loftsson, T.: Cyclodextrin in skin delivery. Cosmet 115(10), 59-66 (2000)
Loftsson, T., Duchene, D.: Cyclodextrins and their pharmaceutical applications. Int. J. Pharm. 329(1-2), 1-11 (2007). doi:10.1016/j.ijpharm.2006.10.044
Loftsson, T., Masson, M.: Cyclodextrins in topical drug formulation: theory and pratice. Int. J. Pharm. 225, 15-30 (2001)
Boulmedarat, L., Piel, G., Bochot, A., Lesieur, S., Delattre, L., Fattal, E.: Cyclodextrin-mediated drug release from liposomes dispersed within a bioadhesive gel. Pharm. Res. 22(6), 962-971 (2005). doi:10.1007/s11095-005-4591-2
Gillet, A., Grammenos, A., Compere, P., Evrard, B., Piel, G.: Development of a new topical system: drug-in-cyclodextrin-indeformable liposome. Int. J. Pharm. 380(1-2), 174-180 (2009). doi:10.1016/j.ijpharm.2009.06.027
Vrhovnik, K., Kristl, J., Sentjurc, M., Smid-Korbar, J.: Influence of liposome bilayer fluidity on the transport of encapsulated substance into the skin as evaluated by EPR. Pharm. Res. 15(4), 525-530 (1998)
Guelluy, P.H., Fontaine-Aupart, M.P., Grammenos, A., Lecart, S., Piette, J., Hoebeke, M.: Optimizing photodynamic therapy by liposomal formulation of the photosensitizer pyropheophorbide-a methyl ester: in vitro and ex vivo comparative biophysical investigations in a colon carcinoma cell line. Photochem. Photobiol. Sci. 9(9), 1252-1260 (2010). doi:10.1039/c0pp00100g
Battistini, L., Burreddu, P., Sartori, A., Arosio, D., Manzoni, L., Paduano, L., Derrico, G., Sala, R., Reia, L., Bonomini, S., Rassu, G., Zanardi, F.: Enhancement of the uptake and cytotoxic activity of doxorubicin in cancer cells by novel cRGD-semipeptide-anchoring liposomes. Mol. Pharm. 11, 2280-2293 (2014). doi:10. 1021/mp400718j
Etheridge, M.L., Campbell, S.A., Erdman, A.G., Haynes, C.L., Wolf, S.M., McCullough, J.: The big picture on nanomedicine: the state of investigational and approved nanomedicine products. Nanomedicine 9, 1-14 (2013). doi:10.1016/j.nano.2012.05.013
Ntimenou, V., Fahr, A., Antimisiaris, S.G.: Elastic vesicles for transdermal drug delivery of hydrophilic drugs: a comparison of important physicochemical characteristics of different vesicle types. J. Biomed. Nanotechnol. 8(4), 613-623 (2012)
Allan, D.: Mapping the lipid distribution in the membranes of BHK cells (mini-review). Mol. Membr. Biol. 13(2), 81-84 (1996)
Simons, K., Ikonen, E.: Functional rafts in cell membranes. Nature 387(6633), 569-572 (1997). doi:10.1038/42408
Zajchowski, L.D., Robbins, S.M.: Lipid rafts and little caves. Eur. J. Biochem. 269(3), 737-752 (2002). doi:10.1046/j.0014-2956. 2001.02715.x
Han, S., Chiang, J.Y.L.: Mechanism of vitamin D receptor inhibition of cholesterol 7a-hydroxylase gene transcription in human hepatocytes. Drug Metab. Dispos. 37(3), 469-478 (2009). doi:10. 1124/dmd.108.025155
Grammenos, A., Bahri, M.A., Guelluy, P.H., Piel, G., Hoebeke, M.: Quantification of randomly-methylated-beta-cyclodextrin effect on liposome: an ESR study. Biochem. Biophys. Res. Commun. 390(1), 5-9 (2009). doi:10.1016/j.bbrc.2009.08.172
Grammenos, A., Mouithys-Mickalad, A., Guelluy, P.H., Lismont, M., Piel, G., Hoebeke, M.: ESR technique for noninvasive way to quantify cyclodextrins effect on cell membranes. Biochem. Biophys. Res. Commun. 398(3), 350-354 (2010). doi:10.1016/j.bbrc. 2010.06.050
Piel, G., Piette, M., Barillaro, V., Castagne, D., Evrard, B., Delattre, L.: Study of the relationship between lipid binding properties of cyclodextrins and their effect on the integrity of liposomes. Int. J. Pharm. 338(1-2), 35-42 (2007). doi:10.1016/j. ijpharm.2007.01.015
Puskás, I., Csempesz, F.: Influence of cyclodextrins on the physical stability of DPPC-liposomes. Colloids Surf. B Biointerfaces 58(2), 218-224 (2007). doi:10.1016/j.colsurfb.2007.03.011
Piel, G., Piette, M., Barillaro, V., Castagne, D., Evrard, B., Delattre, L.: Betamethasone-in-cyclodextrin-in-liposome: the effect of cyclodextrins on encapsulation efficiency and release kinetics. Int. J. Pharm. 312(1-2), 75-82 (2006). doi:10.1016/j. ijpharm.2005.12.044
Hatzi, P., Mourtas, S., Klepetsanis, P.G., Antimisiaris, S.G.: Study of the interaction between cyclodextrins and liposome membranes: effect on the permeability of liposomes. Int. J. Pharm. 225, 15-30 (2007)
Puskás, I., Barcza, L., Szente, L., Csempesz, F.: Features of the interaction between cyclodextrins and colloidal liposomes. J. Incl. Phenom. Macrocycl. Chem. 54(1-2), 89-93 (2006). doi:10.1007/s10847-005-4805-6
Goldstein, D.B.: The effects of drugs on membrane fluidity. Annu. Rev. Pharmacol. Toxicol. 24(1), 43-64 (1984). doi:10. 1146/annurev.pa.24.040184.000355
Tsamaloukas, A., Szadkowska, H., Slotte, J.P., Heerklotz, H.: Interaction of cholesterol with lipid membranes and cyclodextrin characterized by calorimetry. Biophys. J. 89, 1109-1119 (2005)
Joset, A., Grammenos, A., Hoebeke, M., Leyh, B.: Investigation of the interaction between a β-cyclodextrin and DMPC liposomes: a small angle neutron scattering study. J. Incl. Phenom. Macrocycl. Chem. 83(3), 227-238 (2015). doi:10.1007/s10847-015-0558-z
Grammenos, A.: Effets d’une cyclodextrine au sein de systémes membranaires, Editions universitaires europeennes EUE (2011). https://books.google.be/books?id=dFjrugAACAAJ
Arriaga, L.R., López-Montero, I., Monroy, F., Orts-Gil, G., Farago, B., Hellweg, T.: Stiffening effect of cholesterol on disordered lipid phases: a combined neutron spin echo ? dynamic light scattering analysis of the bending elasticity of large unilamellar vesicles. Biophys. J. 96, 3629-3637 (2009). doi:10.1016/ j.bpj.2009.01.045
Bieri, V.G., Wallach, D.F.: Fluorescence quenching in lecithin and lecithin/cholesterol liposomes by paramagnetic lipid analogues. Introduction of a new probe approach. Biochim. Biophys. Acta 389(3), 413-427 (1975)
Almeida, P.F.F., Vaz, W.L.C., Thompson, T.E.: Lateral diffusion in the liquid phases of dimyristoylphosphatidylcholine/cholesterol lipid bilayers: a free volume analysis. Biochemistry 31(29), 6739-6747 (1992). doi:10.1021/bi00144a013
Hope, M., Bally, M., Webb, G., Cullis, P.: Production of large unilamellar vesicles by rapid extrusion procedure. Characterization of size distribution, trapped volume and ability to maintain a membrane potential. Biochem. Biophys. Acta 812, 55-65 (1985)
Coderch, L., Fonollosa, J., De Pera, M., Estelrich, J., De La Maza, A., Parra, J.L.: Influence of cholesterol on liposome fluidity by EPR. Relationship with percutaneous absorption. J. Control Release 68(1), 85-95 (2000). doi:10.1016/S0168-3659(00)00240-6
Olson, F., Hunt, C.A., Szoka, F.C., Vail, W.J., Papahadjopoulos, D.: Preparation of liposomes of defined size distribution by extrusion through polycarbonate membranes. Biochim. Biophys. Acta 557(1), 9-23 (1979)
Bruˆlet, A., Lairez, D., Lapp, A., Cotton, J.-P.: Improvement of data treatment in small-angle neutron scattering. J. Appl. Crystallogr. 40, 165-177 (2007)
Hammouda, B.: Probing nanoscale structures—the sans toolbox. NIST Center for Neutron Research, 224 (2010). doi:10.1016/j. nano.2007.10.035
Anderson, T.G., Tan, A., Ganz, P., Seelig, J.: Calorimetric measurement of phospholipid interaction with methyl-beta-cyclodextrin. Biochemistry 43, 2251-2261 (2004). doi:10.1021/ bi0358869
Castagne, D., Dive, G., Evrard, B., Frédérich, M., Piel, G.: Spectroscopic studies and molecular modeling for understanding the interactions between cholesterol and cyclodextrins. J. Pharm. Pharm. Sci. 13(3), 362-377 (2010)
Leventis, R., Silvius, J.R.: Use of cyclodextrins to monitor transbilayer movement and differential lipid affinities of cholesterol. Biophys. J. 81(4), 2257-2267 (2001). doi:10.1016/ s0006-3495(01)75873-0
Mascetti, J., Castano, S., Cavagnat, D., Desbat, B.: Organization of β-cyclodextrin under pure cholesterol, DMPC, or DMPG and mixed cholesterol/phospholipid monolayers. Langmuir 24(17), 9616-9622 (2008). doi:10.1021/la8004294
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.