surface impedance; parametric solutions; small skin depth
Abstract :
[en] Impedance boundary condition methods (IBCs) are among the most efficient methods for solving time-harmonic eddy-current problems with a small skin depth (delta). However for a wide range of frequencies (or material conductivities) the standard approach is no more efficient, since it requires for each frequency (or conductivity) the computation of a finite element (FE) complex-valued problem. Moreover, the accuracy of IBC decreases dramatically for large delta. As an extension of our previous work, we propose here a more detailed method of parametrization in delta of the 2D small-delta eddy-currents problem. This numerically efficient method gives a very good precision for all the frequencies difficult to address, i.e. from the frequency corresponding to the last good solution obtainable by meshing the conductor up to infinity (perfect conductor solution).
Disciplines :
Electrical & electronics engineering
Author, co-author :
Krähenbühl, Laurent
Dular, Patrick ; Université de Liège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Applied and Computational Electromagnetics (ACE)
Péron, Victor
Perrussel, Ronan
Sabariego, Ruth Vazquez
Poignard, Clair
Language :
English
Title :
Efficient Delta-Parametrization of 2D Surface-Impedance Solutions
Publication date :
June 2015
Event name :
COMPUMAG 2015 (20th Conference on the Computation of Electromagnetic Fields)
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.