finite element method; inductor; model refinement; subproblems
Abstract :
[en] Progressive refinements of the current sources in magnetic vector potential finite element formulations are done with a subproblem method. The sources are first considered via magnetomotive force or Biot-Savart models up to their volume finite element models, from statics to dynamics. A novel way to define the source fields is proposed to lighten the computational efforts, via the conversion of the common volume sources to surface sources, with no need of any pre-resolution. Accuracy improvements are then efficiently ob-tained for local currents and fields, and global quantities, i.e. inductances, resistances, Joule losses and forces.
Disciplines :
Electrical & electronics engineering
Author, co-author :
Dular, Patrick ; Université de Liège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Applied and Computational Electromagnetics (ACE)
Kuo-Peng, Patrick
Ferreira da Luz, Mauricio
Krähenbühl, Laurent
Language :
English
Title :
Progressive Current Source Models in Magnetic Vector Potential Finite Element Formulations
Publication date :
June 2015
Event name :
COMPUMAG 2015 (20th Conference on the Computation of Electromagnetic Fields)
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.