Allouche J.-P., Baake M., Cassaigne J., Damanik D. Palindrome complexity. Theoret. Comput. Sci. 2003, 292(1):9-31. 10.1016/S0304-3975(01)00212-2.
J. Berstel, L. Boasson, O. Carton, I. Fagnot, Infinite words without palindrome, CoRR abs/0903.2382.
A. Blondin Massé, Sur le défaut palindromique des mots infinis, Mémoire, Université du Québec à Montréal, 2008.
Blondin Massé A., Brlek S., Garon A., Labbé S. Combinatorial properties of f-palindromes in the Thue-Morse sequence. Pure Math. Appl. (PU.M.A.) 2008, 19(2-3):39-52.
Blondin Massé A., Brlek S., Garon A., Labbé S. Equations on palindromes and circular words. Theoret. Comput. Sci. 2011, 412(27):2922-2930. 10.1016/j.tcs.2010.07.005.
A. Blondin Massé, S. Brlek, S. Labbé, Palindromic lacunas of the Thue-Morse word, in: Proc. GASCom 2008, 16-20 June 2008, Bibbiena, Arezzo-Italia, 2008, pp. 53-67.
Brlek S., Hamel S., Nivat M., Reutenauer C. On the palindromic complexity of infinite words. Internat. J. Found. Comput. Sci. 2004, 15(2):293-306. 10.1142/S012905410400242X.
M. Bucci, E. Vaslet, Palindromic defect of pure morphic words, in: Internal Proceedings of the 14th Mons Days of Theoretical Computer Science.
Frid A.E. On uniform D0L words. Lecture Notes in Comput. Sci. 1998, vol. 1373:544-554. Springer, Berlin. 10.1007/BFb0028589.
Frid A. Applying a uniform marked morphism to a word. Discrete Math. Theor. Comput. Sci. 1999, 3(3):125-139. electronic.
T. Harju, J. Vesti, L.Q. Zamboni, On a remark of Hof, Knill and Simon on palindromic substitutive systems, November 2013, arXiv e-print 1311.0185. URL . arxiv:/abs/1311.0185.
Hof A., Knill O., Simon B. Singular continuous spectrum for palindromic Schrödinger operators. Comm. Math. Phys. 1995, 174(1):149-159. URL http://projecteuclid.org/getRecord?id=euclid.cmp/1104275098.
Keane M. Interval exchange transformations. Math. Z. 1975, 141:25-31.
Klouda K. Bispecial factors in circular non-pushy D0L languages. Theoret. Comput. Sci. 2012, 445:63-74. 10.1016/j.tcs.2012.05.007.
König D. Theory of Finite and Infinite Graphs 1990, Birkhäuser Boston, Inc., Boston, MA. 10.1007/978-1-4684-8971-2.
S. Labbé, Propriétés combinatoires des f-palindromes, Mémoire, Université du Québec à Montréal, m10615, 2008.
Labbé S. A counterexample to a question of Hof, Knill and Simon. Electron. J. Combin. 2014, 21(3):#P3.11. URL http://www.combinatorics.org/ojs/index.php/eljc/article/view/v21i3p11.
Lothaire M. Combinatorics on Words. Encyclopedia of Mathematics and its Applications 1983, vol. 17. Addison-Wesley Publishing Co., Reading, Mass.
Lothaire M. Combinatorics on Words. Cambridge Mathematical Library 1997, Cambridge University Press, Cambridge. 10.1017/CBO9780511566097.
Lothaire M. Algebraic Combinatorics on Words. Encyclopedia of Mathematics and its Applications 2002, vol. 90. Cambridge University Press, Cambridge.
N.J.A. Sloane, The on-line encyclopedia of integer sequences, 2010, published electronically at . http://oeis.org.
Tan B. Mirror substitutions and palindromic sequences. Theoret. Comput. Sci. 2007, 389(1-2):118-124. 10.1016/j.tcs.2007.08.003.