van der Bruggen P., Traversari C., Chomez P., Lurquin C., De Plaen E., Van den Eynde B., et al. A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science 1991, 254:1643-1647.
Chomez P., De Backer O., Bertrand M., De Plaen E., Boon T., Lucas S. An overview of the MAGE gene family with the identification of all human members of the family. Cancer Res. 2001, 61:5544-5551.
Sang M., Wang L., Ding C., Zhou X., Wang B., Wang L., et al. Melanoma-associated antigen genes-an update. Cancer Lett. 2011, 302:85-90. 10.1016/j.canlet.2010.10.021.
Sang M., Lian Y., Zhou X., Shan B. MAGE-a family: attractive targets for cancer immunotherapy. Vaccine 2011, 29:8496-8500. 10.1016/j.vaccine.2011.09.014.
Miranda E.I. MAGE, biological functions and potential clinical applications. Leuk. Res. 2010, 34:1121-1122. 10.1016/j.leukres.2010.03.045.
Meek D.W., Marcar L. MAGE-a antigens as targets in tumour therapy. Cancer Lett. 2012, 324:126-132. 10.1016/j.canlet.2012.05.011.
Esfandiary A., Ghafouri-Fard S. MAGE-A3: an immunogenic target used in clinical practice. Immunotherapy 2015, 7:683-704. 10.2217/imt.15.29.
Destexhe E., Stannard D., Wilby O.K., Grosdidier E., Baudson N., Forster R., et al. Nonclinical reproductive and developmental safety evaluation of the MAGE-A3 cancer immunotherapeutic, a therapeutic vaccine for cancer treatment. Reprod. Toxicol. 2015, 51:90-105. 10.1016/j.reprotox.2014.12.009.
Li X., Hughes S.C., Wevrick R. Evaluation of melanoma antigen (MAGE) gene expression in human cancers using the cancer genome atlas. Cancer Genet. 2015, 208:25-34. 10.1016/j.cancergen.2014.11.005.
De Faveri L.E., Hurst C.D., Platt F.M., Taylor C.F., Roulson J.-A., Sanchez-Carbayo M., et al. Putative tumour suppressor gene necdin is hypermethylated and mutated in human cancer. Br. J. Cancer 2013, 108:1368-1377. 10.1038/bjc.2013.104.
Barker P.A., Salehi A. The MAGE proteins: emerging roles in cell cycle progression, apoptosis, and neurogenetic disease. J. Neurosci. Res. 2002, 67:705-712. 10.1002/jnr.10160.
Sasaki A., Masuda Y., Iwai K., Ikeda K., Watanabe K. A RING finger protein Praja1 regulates Dlx5-dependent transcription through its ubiquitin ligase activity for the Dlx/Msx-interacting MAGE/necdin family protein, dlxin-1. J. Biol. Chem. 2002, 277:22541-22546.
Doyle J.M., Gao J., Wang J., Yang M., Potts P.R. MAGE-RING protein complexes comprise a family of E3 ubiquitin ligases. Mol. Cell 2010, 39:963-974. 10.1016/j.molcel.2010.08.029.
Feng Y., Gao J., Yang M. When MAGE meets RING: insights into biological functions of MAGE proteins. Protein Cell 2011, 2:7-12. 10.1007/s13238-011-1002-9.
Tseng H.Y., Chen L.H., Ye Y., Tay K.H., Jiang C.C., Guo S.T., et al. The melanoma-associated antigen MAGE-D2 suppresses TRAIL receptor 2 and protects against TRAIL-induced apoptosis in human melanoma cells. Carcinogenesis 2012, 33:1871-1881. 10.1093/carcin/bgs236.
Strekalova E., Malin D., Good D.M., Cryns V.L. Methionine deprivation induces a targetable vulnerability in triple-negative breast cancer cells by enhancing TRAIL Receptor-2 expression. Clin. Cancer Res. 2015, 10.1158/1078-0432.CCR-14-2792.
Papageorgio C., Brachmann R., Zeng J., Culverhouse R., Zhang W., McLeod H. MAGED2: a novel p53-dissociator. Int. J. Oncol. 2007, 31:1205-1211.
Kannengiesser C., Spatz A., Michiels S., Eychene A., Dessen P., Lazar V., et al. Gene expression signature associated with BRAF mutations in human primary cutaneous melanomas. Mol. Oncol. 2008, 1:425-430.
Cho N.H., Koh E.S., Lee D.W., Kim H., Choi Y.P., Cho S.H., et al. Comparative proteomics of pulmonary tumors with neuroendocrine differentiation. J. Proteome Res. 2006, 5:643-650. 10.1021/pr050460x.
Hashimoto R., Kanda M., Takami H., Shimizu D., Oya H., Hibino S., et al. Aberrant expression of melanoma-associated antigen-D2 serves as a prognostic indicator of hepatocellular carcinoma outcome following curative hepatectomy. Oncol. Lett. 2015, 9:1201-1206. 10.3892/ol.2014.2823.
Kanda M., Nomoto S., Oya H., Takami H., Shimizu D., Hibino S., et al. The expression of melanoma-associated antigen D2 both in surgically resected and serum samples serves as clinically relevant biomarker of gastric cancer progression. Ann. Surg. Oncol. 2015, 1-8. 10.1245/s10434-015-4457-8.
Chung F.-Y., Cheng T.-L., Chang H.-J., Chiu H.-H., Huang M.-Y., Chang M.-S., et al. Differential gene expression profile of MAGE family in taiwanese patients with colorectal cancer. J. Surg. Oncol. 2010, 102:148-153. 10.1002/jso.21580.
Tsai J.-R., Chong I.-W., Chen Y.-H., Yang M.-J., Sheu C.-C., Chang H.-C., et al. Differential expression profile of MAGE family in non-small-cell lung cancer. Lung Cancer 2007, 56:185-192. 10.1016/j.lungcan.2006.12.004.
Takada H., Kurisaki A. Emerging roles of nucleolar and ribosomal proteins in cancer, development, and aging. Cell. Mol. Life Sci. 2015, 10.1007/s00018-015-1984-1.
Hein N., Hannan K.M., George A.J., Sanij E., Hannan R.D. The nucleolus: an emerging target for cancer therapy. Trends Mol. Med. 2013, 19:643-654. 10.1016/j.molmed.2013.07.005.
Sirri V., Urcuqui-Inchima S., Roussel P., Hernandez-Verdun D. Nucleolus: the fascinating nuclear body. Histochem. Cell Biol. 2008, 129:13-31. 10.1007/s00418-007-0359-6.
Hernandez-Verdun D., Roussel P., Thiry M., Sirri V., Lafontaine D.L.J. The nucleolus: structure/function relationship in RNA metabolism. Wiley Interdiscip. Rev. RNA. 2010, 1:415-431. 10.1002/wrna.39.
Thiry M., Lafontaine D.L.J. Birth of a nucleolus: the evolution of nucleolar compartments. Trends Cell Biol. 2005, 15:194-199. 10.1016/j.tcb.2005.02.007.
Burger K., Muhl B., Harasim T., Rohrmoser M., Malamoussi A., Orban M., et al. Chemotherapeutic drugs inhibit ribosome biogenesis at various levels. J. Biol. Chem. 2010, 285:12416-12425. 10.1074/jbc.M109.074211.
James A., Wang Y., Raje H., Rosby R., DiMario P. Nucleolar stress with and without p53. Nucleus 2014, 5.
Nalabothula N., Indig F.E., Carrier F. The nucleolus takes control of protein trafficking under cellular stress. Mol. Cell. Pharmacol. 2010, 2:203-212.
Boulon S., Westman B.J., Hutten S., Boisvert F.-M., Lamond A.I. The nucleolus under stress. Mol. Cell 2010, 40:216-227. 10.1016/j.molcel.2010.09.024.
Diserens A.C., de Tribolet N., Martin-Achard A., Gaide A.C., Schnegg J.F., Carrel S. Characterization of an established human malignant glioma cell line: LN-18. Acta Neuropathol. 1981, 53:21-28.
Chang H.-Y., Fan C.-C., Chu P.-C., Hong B.-E., Lee H.J., Chang M.-S. HPuf-A/KIAA0020 modulates PARP-1 cleavage upon genotoxic stress. Cancer Res. 2011, 71:1126-1134. 10.1158/0008-5472.CAN-10-1831.
Roth J., Bendayan M., Carlemalm E., Villiger W., Garavito M. Enhancement of structural preservation and immunocytochemical staining in low temperature embedded pancreatic tissue. J. Histochem. Cytochem. 1981, 29:663-671.
Habraken Y., Piret B., Piette J. S phase dependence and involvement of NF-kappaB activating kinase to NF-kappaB activation by camptothecin. Biochem. Pharmacol. 2001, 62:603-616.
Sabatel H., Di Valentin E., Gloire G., Dequiedt F., Piette J., Habraken Y. Phosphorylation of p65(RelA) on Ser(547) by ATM represses NF-κB-dependent transcription of specific genes after genotoxic stress. PLoS ONE 2012, 7. 10.1371/journal.pone.0038246.
Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods 2001, 25:402-408. 10.1006/meth.2001.1262.
Ma H., Pederson T. The nucleolus stress response is coupled to an ATR-Chk1-mediated G2 arrest. Mol. Biol. Cell 2013, 24:1334-1342. 10.1091/mbc.E12-12-0881.
Yang B., O'Herrin S.M., Wu J., Reagan-Shaw S., Ma Y., Bhat K.M.R., et al. MAGE-A, mMage-b, and MAGE-C proteins form complexes with KAP1 and suppress p53-dependent apoptosis in MAGE-positive cell lines. Cancer Res. 2007, 67:9954-9962. 10.1158/0008-5472.CAN-07-1478.
Marcar L., MacLaine N.J., Hupp T.R., Meek D.W. Mage-A cancer/testis antigens inhibit p53 function by blocking its interaction with chromatin. Cancer Res. 2010, 70:10362-10370. 10.1158/0008-5472.CAN-10-1341.
Ladelfa M.F., Peche L.Y., Toledo M.F., Laiseca J.E., Schneider C., Monte M. Tumor-specific MAGE proteins as regulators of p53 function. Cancer Lett. 2012, 325:11-17. 10.1016/j.canlet.2012.05.031.
Muro E., Hoang T.Q., Jobart-Malfait A., Hernandez-Verdun D. In nucleoli, the steady state of nucleolar proteins is leptomycin B-sensitive. Biol. Cell. 2008, 100:303-313. 10.1042/BC20070117.
Yang Q., Ou C., Liu M., Xiao W., Wen C., Sun F. NRAGE promotes cell proliferation by stabilizing PCNA in a ubiquitin-proteasome pathway in esophageal carcinomas. Carcinogenesis 2014, 35:1643-1651. 10.1093/carcin/bgu084.
Bennett L.N., Clarke P.R. Regulation of Claspin degradation by the ubiquitin-proteosome pathway during the cell cycle and in response to ATR-dependent checkpoint activation. FEBS Lett. 2006, 580:4176-4181. 10.1016/j.febslet.2006.06.071.
Nghiem P., Park P.K., Kim Y., Vaziri C., Schreiber S.L. ATR inhibition selectively sensitizes G1 checkpoint-deficient cells to lethal premature chromatin condensation. Proc. Natl. Acad. Sci. U. S. A. 2001, 98:9092-9097. 10.1073/pnas.161281798.
Dai M.-S., Sun X.-X., Lu H. Aberrant expression of nucleostemin activates p53 and induces cell cycle arrest via inhibition of MDM2. Mol. Cell. Biol. 2008, 28:4365-4376. 10.1128/MCB.01662-07.
Lo D., Lu H. Nucleostemin: Another nucleolar "Twister" of the p53-MDM2 loop. Cell Cycle 2010, 9:3227-3232. 10.4161/cc.9.16.12605.
Holmberg Olausson K., Nistér M., Lindström M.S. p53 -Dependent and -Independent Nucleolar Stress Responses. Cell 2012, 1:774-798. 10.3390/cells1040774.
Takagi M., Absalon M.J., McLure K.G., Kastan M.B. Regulation of p53 Translation and Induction after DNA Damage by Ribosomal Protein L26 and Nucleolin. Cell 2005, 123:49-63. 10.1016/j.cell.2005.07.034.
Pfister A.S., Keil M., Kühl M. The Wnt target protein Peter Pan defines a novel p53-independent nucleolar stress-response pathway. J. Biol. Chem. 2015, 290:10905-10918. 10.1074/jbc.M114.634246.
Kobayashi J., Fujimoto H., Sato J., Hayashi I., Burma S., Matsuura S., et al. Nucleolin participates in DNA double-strand break-induced damage response through MDC1-dependent pathway. PLoS One 2012, 7. 10.1371/journal.pone.0049245.
Matsuoka S., Ballif B.A., Smogorzewska A., McDonald E.R., Hurov K.E., Luo J., et al. ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science 2007, 316:1160-1166. 10.1126/science.1140321.
Stokes M.P., Rush J., Macneill J., Ren J.M., Sprott K., Nardone J., et al. Profiling of UV-induced ATM/ATR signaling pathways. Proc. Natl. Acad. Sci. U. S. A. 2007, 104:19855-19860. 10.1073/pnas.0707579104.
M. Machyna, P. Heyn, K.M. Neugebauer, Cajal bodies: where form meets function., Wiley Interdiscip. Rev. RNA. 4 17-34. doi:10.1002/wrna.1139.
Lavi-Itzkovitz A., Tcherpakov M., Levy Z., Itzkovitz S., Muscatelli F., Fainzilber M. Functional consequences of necdin nucleocytoplasmic localization. PLoS ONE 2012, 7. 10.1371/journal.pone.0033786.
Musinova Y.R., Kananykhina E.Y., Potashnikova D.M., Lisitsyna O.M., Sheval E.V. A charge-dependent mechanism is responsible for the dynamic accumulation of proteins inside nucleoli. Biochim. Biophys. Acta, Mol. Cell Res. 2015, 1853:101-110. 10.1016/j.bbamcr.2014.10.007.
Martin R.M., Ter-Avetisyan G., Herce H.D., Ludwig A.K., Lättig-Tünnemann G., Cardoso M.C. Principles of protein targeting to the nucleolus. Nucleus 2015, 10.1080/19491034.2015.1079680.
Emmott E., Hiscox J.A. Nucleolar targeting: the hub of the matter. EMBO Rep. 2009, 10:231-238. 10.1038/embor.2009.14.
Ginisty H., Sicard H., Roger B., Bouvet P. Structure and functions of nucleolin. J. Cell Sci. 1999, 112(Pt 6):761-772.
Tajrishi M.M., Tuteja R., Tuteja N. Nucleolin: The most abundant multifunctional phosphoprotein of nucleolus. Commun. Integr. Biol. 2011, 4:267-275. 10.4161/cib.4.3.14884.
Lindström M.S. NPM1/B23: a multifunctional chaperone in ribosome biogenesis and chromatin remodeling. Biochem. Res. Int. 2011, 2011:195209. 10.1155/2011/195209.
Li Y.P., Busch R.K., Valdez B.C., Busch H. C23 interacts with B23, a putative nucleolar-localization-signal-binding protein. Eur. J. Biochem. 1996, 237:153-158.
Wang Y., Chen B., Li Y., Zhou D., Chen S. PNRC accumulates in the nucleolus by interaction with B23/nucleophosmin via its nucleolar localization sequence. Biochim. Biophys. Acta 2011, 1813:109-119. 10.1016/j.bbamcr.2010.09.017.
Yogev O., Saadon K., Anzi S., Inoue K., Shaulian E. DNA damage-dependent translocation of B23 and p19 ARF is regulated by the Jun N-terminal kinase pathway. Cancer Res. 2008, 68:1398-1406. 10.1158/0008-5472.CAN-07-2865.
Negi S.S., Olson M.O.J. Effects of interphase and mitotic phosphorylation on the mobility and location of nucleolar protein B23. J. Cell Sci. 2006, 119:3676-3685. 10.1242/jcs.03090.
Chen D., Huang S. Nucleolar components involved in ribosome biogenesis cycle between the nucleolus and nucleoplasm in interphase cells. J. Cell Biol. 2001, 153:169-176.
Stoldt S., Wenzel D., Schulze E., Doenecke D., Happel N. G1 phase-dependent nucleolar accumulation of human histone H1x. Biol. Cell. 2007, 99:541-552. 10.1042/BC20060117.
Trinkle-Mulcahy L., Andrews P.D., Wickramasinghe S., Sleeman J., Prescott A., Lam Y.W., et al. Time-lapse imaging reveals dynamic relocalization of PP1gamma throughout the mammalian cell cycle. Mol. Biol. Cell 2003, 14:107-117. 10.1091/mbc.E02-07-0376.
Chamousset D., De Wever V., Moorhead G.B., Chen Y., Boisvert F.-M., Lamond A.I., et al. RRP1B targets PP1 to mammalian cell nucleoli and is associated with Pre-60S ribosomal subunits. Mol. Biol. Cell 2010, 21:4212-4226. 10.1091/mbc.E10-04-0287.
Imai H., Furuta K., Landberg G., Kiyosawa K., Liu L., Tan E. Autoantibody to DNA topoisomerase II in primary liver cancer. Clin. Cancer Res. 1995, 1:417-424.
Hernandez-Verdun D. Assembly and disassembly of the nucleolus during the cell cycle. Nucleus 2011, 2:189-194. 10.4161/nucl.2.3.16246.
Abella N., Brun S., Calvo M., Tapia O., Weber J.D., Berciano M.T., et al. Nucleolar disruption ensures nuclear accumulation of p21 upon DNA damage. Traffic 2010, 11:743-755. 10.1111/j.1600-0854.2010.01063.x.
Barthelmes H.U., Habermeyer M., Christensen M.O., Mielke C., Interthal H., Pouliot J.J., et al. TDP1 overexpression in human cells counteracts DNA damage mediated by topoisomerases I and II. J. Biol. Chem. 2004, 279:55618-55625. 10.1074/jbc.M405042200.
Lee C., Smith B.A., Bandyopadhyay K., Gjerset R.A. DNA damage disrupts the p14ARF-B23(nucleophosmin) interaction and triggers a transient subnuclear redistribution of p14ARF. Cancer Res. 2005, 65:9834-9842. 10.1158/0008-5472.CAN-05-1759.