Evans, J. S.; Computational Physics, Inc. Springfield, Virginia USA
Stevens, M. H.; Naval Research Laboratory Washington, District of Columbia USA
Lumpe, J. D.; Computational Physics, Inc. Springfield, Virginia USA
Schneider, N. M.; Laboratory for Atmospheric and Space Physics University of Colorado Boulder Boulder, Colorado USA
Stewart, A. I. F.; Laboratory for Atmospheric and Space Physics University of Colorado Boulder Boulder, Colorado USA
Deighan, J.; Laboratory for Atmospheric and Space Physics University of Colorado Boulder Boulder, Colorado USA
Jain, S. K.; Laboratory for Atmospheric and Space Physics University of Colorado Boulder Boulder, Colorado USA
Chaffin, M. S.; Laboratory for Atmospheric and Space Physics University of Colorado Boulder Boulder, Colorado USA
Crismani, M.; Laboratory for Atmospheric and Space Physics University of Colorado Boulder Boulder, Colorado USA
Stiepen, Arnaud ; Université de Liège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Mcclintock, W. E.; Laboratory for Atmospheric and Space Physics University of Colorado Boulder Boulder, Colorado USA
Holsclaw, G. M.; Laboratory for Atmospheric and Space Physics University of Colorado Boulder Boulder, Colorado USA
Lefèvre, F.; LATMOS, CNRS Paris France
Lo, D. Y.; Lunar and Planetary Laboratory University of Arizona Tucson, Arizona USA
Clarke, J. T.; Center for Space Physics Boston University Boston, Massachusetts USA
Eparvier, F. G.; Laboratory for Atmospheric and Space Physics University of Colorado Boulder Boulder, Colorado USA
Thiemann, E. M. B.; Laboratory for Atmospheric and Space Physics University of Colorado Boulder Boulder, Colorado USA
Chamberlin, P. C.; NASA Goddard Space Flight Center Greenbelt, Maryland USA
Bougher, Stephen W.; Department of Atmospheric, Oceanic, and Space Sciences University of Michigan Ann Arbor, Michigan USA
Bell, J. M.; National Institute of Aerospace Hampton, Virginia USA
Jakosky, Bruce M.; Laboratory for Atmospheric and Space Physics University of Colorado Boulder Boulder, Colorado USA
Avakyan, S. V., R. N. II'in, V. M. Lavrov, and, G. N. Ogurtsov, (Eds) (1998), Collision Processes and Excitation of UV Emission From Planetary Atmospheric Gases: A Handbook of Cross Sections, Gordon and Breach, Amsterdam.
Barth, C. A., W. G. Fastie, C. W. Hord, J. B. Pearce, K. K. Kelly, A. I. Stewart, G. E. Thomas, G. P. Anderson, and, O. F. Raper, (1969), Mariner 6: ultraviolet spectrum of Mars upper atmosphere, Science, 165, 1004-1005.
Barth, C. A., C. W. Hord, J. B. Pearce, K. K. Kelly, G. P. Anderson, and, A. I. Stewart, (1971), Mariner 6 and 7 ultraviolet spectrometer experiment: Upper atmosphere data, J. Geophys. Res., 76, 2213-2227, doi: 10.1029/JA076i010p02213.
Barth, C. A., A. I. Stewart, and, C. W. Hord, (1972), Mars airglow spectoscopy and variations in Lyman alpha, Icarus, 17, 457-468.
Bell, K. L., and, R. P. Stafford, (1992), Photoionization cross-sections for atomic oxygen, Planet. Space Sci., 40, 1419.
Bertaux, J.-L., F. Leblanc, O. Witasse, E. Quemerais, J. Lilensten, S. A. Stern, B. Sandel, and, O. Korablev, (2005a), Discovery of an aurora on Mars, Nature, 435, 790-794.
Bertaux, J.-L., F. Leblanc, S. Perrier, E. Quemerais, O. Korablev, F. Forget, D. Fonteyn, S. A. Stern, and, B. Sandel, (2005b), Detection of Martian nightglow: NO recombination bands and aurora over crustal magnetic anomalies, AGU Fall Meeting Abstracts, p. A7.
Bertaux, J.-L., et al., (2005c), Nightglow in the upper atmosphere of Mars and implications for atmospheric transport, Science, 307, 566-569.
Bishop, J., and, P. D. Feldman, (2003), Analysis of the Astro-1/Hopkins Ultraviolet Telescope EUVFUV dayside nadir spectral radiance measurements, J. Geophys. Res., 108 (A6), 1243, doi: 10.1029/2001JA000330.
Bishop, J., M. H. Stevens, and, P. D. Feldman, (2007), Molecular nitrogen Carroll-Yoshino v' = 0 emission in the thermospheric dayglow as seen by the Far Ultraviolet Spectroscopic Explorer, J. Geophys. Res., 112, A10312, doi: 10.1029/2007JA012389.
Bougher, S. W., T. M. McDunn, K. A. Zoldak, and, J. M. Forbes, (2009), Solar cycle variability of Mars dayside exospheric temperatures: Model evaluation of underlying thermal balances, Geophys. Res. Lett., 36, L05201, doi: 10.1029/2008GL036376.
Bougher, S. W., D. Pawlowski, J. M. Bell, S. Nelli, T. McDunn, J. R. Murphy, M. Chizek, and, A. Ridley, (2015), Mars Global Ionosphere-Thermosphere Model: Solar cycle, seasonal, and diurnal variations of the Mars upper atmosphere, J. Geophys. Res. Planets, 120, 311-342, doi: 10.1002/2014JE004715.
Brain, D. A., J. S. Halekas, L. M. Peticolas, R. P. Lin, J. G. Luhmann, D. L. Mitchell, G. T. Delory, S. W. Bougher, M. H. Acuña, and, H. Rème, (2006), On the origin of aurorae on Mars, Geophys. Res. Lett., 33, L01201, doi: 10.1029/2005GL024782.
Cartwright, D. C., S. Trajmar, A. Chutjian, and, W. Williams, (1977), Electron impact excitation of the electronic states of N2, II, Integral cross sections at incident energies from 10 to 50 eV, Phys. Rev. A, 16, 1041-1051.
Conway, R. R., (1988), NRL Memorandum Report 6155 Naval Research Laboratory, Washington, D. C.
Cox, C., A. Saglam, J.-C. Gérard, J.-L. Bertaux, F. González-Galindo, F. Leblanc, and, A. Reberac, (2008), Distribution of the ultraviolet nitric oxide Martian night airglow: Observations from Mars Express and comparisons with a one-dimensional model, J. Geophys. Res., 113, E08012, doi: 10.1029/2007JE003037.
Daniell, R. E., and, D. J. Strickland, (1986), Dependence of auroral middle UV emissions on the incident electron spectrum and neutral atmosphere, J. Geophys. Res., 91, 321-327, doi: 10.1029/JA091iA01p00321.
Dubinin, E., M. Fraenz, J. Woch, S. Barabash, and, R. Lundin, (2009), Long-lived auroral structures and atmospheric losses through auroral flux tubes on Mars, Geophys. Res. Lett., 36, L08108, doi: 10.1029/2009GL038209.
Earls, L. T., (1935), Intensities in 2? → 2? transitions in diatomic molecules, Phys. Rev., 48, 423-424.
Eparvier, F. G., (2015), The solar extreme ultraviolet monitor for MAVEN, Space Sci. Rev., doi: 10.1007/s11214-015-0195-2.
Farley, D. R., and, R. J. Cattolica, (1996), Electron-beam fluorescence from the A2Πu → X2Πg and B 2 Σ u + → X 2 Π g transitions of CO2+, J. Quant. Spectrosc. Radiat. Transfer, 56, 83-96.
Fox, J. L., (2004a), CO2+ dissociative recombination: A source of thermal and nonthermal C on Mars, J. Geophys. Res., 109, A08306, doi: 10.1029/2004JA010514.
Fox, J. L., (2004b), Response of the Martian thermosphere//ionosphere to enhanced fluxes of solar soft X-rays, J. Geophys. Res., 109, A11310, doi: 10.1029/2004JA010380.
Fox, J. L., and, A. Dalgarno, (1979), Ionization, luminosity, and heating of the upper atmosphere of Mars, J. Geophys. Res., 84, 7315-7333, doi: 10.1029/JA084iA12p07315.
Franz, H., M. Trainer, M. Wong, P. Mahaffy, S. Atreya, H. Manning, and, J. Stern, (2015), Reevaluated Martian atmospheric mixing ratios from the mass spectrometer on the Curiosity rover, Planet. Space Sci., 109-110, 154-158.
Gronoff, G., C. S. Wedlund, C. J. Mertens, M. Barthélemy, R. J. Lillis, and, O. Witasse, (2012a), Computing uncertainties in ionosphere-airglow models: I. Electron flux and species production uncertainties for Mars, J. Geophys. Res., 117, A04306, doi: 10.1029/2011JA016930.
Gronoff, G., C. S. Wedlund, C. J. Mertens, M. Barthélemy, R. J. Lillis, and, O. Witasse, (2012b), Computing uncertainties in ionosphere-airglow models: II. The Martian airglow, J. Geophys. Res., 117, A05309, doi: 10.1029/2011JA017308.
Ip, W. H., (2012), ENA diagnostics of auroral activity at Mars, Planet. Space Sci., 63, 83-86.
Jain, S. K., and, A. Bhardwaj, (2011), Model calculation of N2 Vegard-Kaplan band emissions in Martian dayglow, J. Geophys. Res., 116, E07005, doi: 10.1029/2010JE003778.
Jain, S. K., and, A. Bhardwaj, (2012), Impact of solar EUV flux on CO Cameron band and CO2+ UV doublet emissions in the dayglow of Mars, Planet. Space Sci., 63-64, 110-122.
Jain, S. K., et al., (2015), The structure and variability of Mars upper atmosphere as seen in MAVEN/IUVS dayglow observations, Geophys. Res. Lett., 42, doi: 10.1002/2015GL065419.
Jakosky, B. M., et al., (2015), The Mars Atmosphere and Volatile EvolutioN (MAVEN) Mission, Space Sci. Rev., doi: 10.1007/s11214-015-0139-x.
Leblanc, F., O. Witasse, J. Winningham, D. Brain, J. Lilensten, P.-L. Blelly, R. A. Frahm, J. S. Halekas, and, J. L. Bertaux, (2006a), Origins of the Martian aurora observed by Spectroscopy for Investigation of Characteristics of the Atmosphere of Mars (SPICAM) on board Mars Express, J. Geophys. Res., 111, A09313, doi: 10.1029/2006JA011763.
Leblanc, F., J. Y. Chaufray, J. Lilensten, O. Witasse, and, J.-L. Bertaux, (2006b), Martian dayglow as seen by the SPICAM UV spectrograph on Mars Express, J. Geophys. Res., 111, E09S11, doi: 10.1029/2005JE002664.
Leblanc, F., J. Y. Chaufray, and, J. L. Bertaux, (2007), On Martian nitrogen dayglow emission observed by SPICAM UV spectrograph/Mars Express, Geophys. Res. Lett., 34, L02206, doi: 10.1029/2006GL028437.
Leblanc, F., et al., (2008), Observations of aurorae by SPICAM ultraviolet spectrograph on board Mars Express: Simultaneous ASPERA-3 and MARSIS measurements, J. Geophys. Res., 113, A08311, doi: 10.1029/2008JA013033.
Lo, D. Y., et al., (2015), Non-migrating tides in the Martian atmosphere as observed by MAVEN IUVS, Geophys. Res. Lett., 42, doi: 10.1002/2015GL066268.
Lumpe, J. D., et al., (1997), POAM II retrieval algorithm and error analysis, J. Geophys. Res., 102, 23,593-23,614, doi: 10.1029/97JD00906.
Lumpe, J. D., R. M. Bevilacqua, K. W. Hoppel, and, C. E. Randall, (2002), POAM III retrieval algorithm and error analysis, J. Geophys. Res., 107 (D21), 4575, doi: 10.1029/2002JD002137.
Lumpe, J. D., L. E. Floyd, L. C. Herring, S. T. Gibson, and, B. R. Lewis, (2007), Measurements of thermospheric molecular oxygen from the Solar Ultraviolet Spectral Irradiance Monitor, J. Geophys. Res., 112, D16308, doi: 10.1029/2006JD008076.
Mahaffy, P. R., et al., (2014), The neutral gas and ion mass spectrometer on the Mars atmosphere and volatile evolution mission, Space Sci. Rev., doi: 10.1007/s11214-014-0091-1.
Mahaffy, P. R., M. Benna, M. Elrod, R. V. Yelle, S. W. Bougher, S. W. Stone, and, B. M. Jakosky, (2015), Structure and composition of the neutral upper atmosphere of Mars from the MAVEN NGIMS investigation, Geophys. Res. Lett., 42, doi: 10.1002/2015GL065329.
Majeed, T., and, D. J. Strickland, (1997), New survey of electron impact cross sections for photoelectron and auroral electron energy loss calculations, J. Phys. Chem. Ref. Data, 26, 335-349.
McClintock, W. E., N. M. Schneider, G. M. Holsclaw, J. T. Clarke, A. C. Hoskins, I. Stewart, F. Montmessin, R. V. Yelle, and, J. Deighan, (2014), The Imaging Ultraviolet Spectrograph (IUVS) for the MAVEN Mission, Space Sci. Rev., doi: 10.1007/s11214-014-0098-7.
Meier, R. R., (1991), Ultraviolet spectroscopy and remote sensing of the upper atmosphere, Space Sci. Rev., 58, 1-185, doi: 10.1007/BF01206000.
Millour, E., et al., (2014), The Mars Climate Database (MCD version 5.1), LPI Contrib. 1791, 1184.
Morrill, J. S., and, W. M. Benesch, (1996), Auroral N2 emissions and the effect of collisional processes on N2 triplet state vibrational populations, J. Geophys. Res., 101, 261-274, doi: 10.1029/95JA02835.
Nier, A. O., and, M. B. McElroy, (1977), Composition and structure of Mars' upper atmosphere: Results from the neutral mass spectrometers on Viking 1 and 2, J. Geophys. Res., 82 (28), 4341-4349, doi: 10.1029/JS082i028p04341.
Paxton, L. J., and, D. E. Anderson, (1992), Far ultraviolet remote sensing of Venus and Mars, in Venus and Mars: Atntospheres, Ionospheres, and Solar Wind Interactions, Geophys. Monogr. Ser., vol. 66, edited by, J. G. Luhmann, M. Tatrallyay, and, R. O. Pepin, pp. 113-189, AGU, Washington D. C.
Perrier, S., J. L. Bertaux, F. Lefevre, S. Lebonnois, O. Korablev, A. Fedorova, and, F. Montmessin, (2006), Global distribution of total ozone on Mars from SPICAM/MEX UV measurements, J. Geophys. Res., 111, E09S06, doi: 10.1029/2006JE002681.
Picone, J. M., (2008), Influence of systematic error on least squares retrieval of upper atmospheric parameters from the ultraviolet airglow, J. Geophys. Res., 113, A09306, doi: 10.1029/2007JA012831.
Rodgers, C. D., (2000), Series on Atmospheric Oceanic and Planetary Physics, World Sci., Singapore.
Samson, J. A. R., Y. Chung, and, E. M. Lee, (1991), Excited ionic and neutral fragments produced by dissociation of the N2+ H band, J. Chem. Phys., 95, 717-719.
Schindhelm, E., S. A. Stern, R. Gladstone, and, A. Zangari, (2015), Pluto and Charon's UV spectra from IUE to New Horizons, Icarus, 246, 206-212.
Simon, C., O. Witasse, F. Leblanc, G. Gronoff, and, J. L. Bertaux, (2009), Dayglow onMars: Kinetic modeling with SPICAM UV limb data, Planet. Space Sci., 57, 1008-1021.
Stevens, M. H., (2002), The EUV Airglow of N2 atmospheres, in Atmospheres in the Solar System: Comparative Aeronomy, Geophys. Monogr., vol. 130, pp. 319-328, AGU, Washington, D. C.
Stevens, M. H., et al., (2015a), New observations of molecular nitrogen in the Martian upper atmosphere by IUVS on MAVEN, Geophys. Res. Lett., 42, doi: 10.1002/2015GL065319.
Stevens, M. H., J. S. Evans, J. Lumpe, J. H. Westlake, J. M. Ajello, E. T. Bradley, and, L. W. Esposito, (2015b), Molecular nitrogen and methane density retrievals from Cassini UVIS dayglow observations of Titan's upper atmosphere, Icarus, 247, 301-312.
Stewart, A. I., (1972), Mariner 6 and 7 ultraviolet spectrometer experiment: Implications of CO2+, CO and O airglow, J. Geophys. Res., 77, 54-68, doi: 10.1029/JA077i001p00054.
Stewart, A. I., C. Barth, and, C. W. Hord, (1972), Mariner 9 ultraviolet spectrometer experiment: Structure of Mars' upper atmosphere, Icarus, 17, 469-474.
Stiepen, A., J.-C. Gérard, S. Bougher, F. Montmessin, B. Hubert, and, J. L. Bertaux, (2015), Mars thermospheric scale height: CO Cameron and CO2+ dayglow observations from Mars Express, Icarus, 245, 295-305, doi: 10.1016/j.icarus.2014.09.051.
Strickland, D. J., G. E. Thomas, and, P. R. Sparks, (1972), Mariner 6 and 7 ultraviolet spectrometer experiment: Analysis of the O I 1304 Å and 1356 Å emissions, J. Geophys. Res., 77, 4052-4068, doi: 10.1029/JA077i022p04052.
Strickland, D. J., A. I. Srewart, C. A. Barth, C. W. Hord, and, A. L. Lane, (1973), Mariner 9 ultraviolet spectrometer experiment: Mars atomic oxygen 1304-Å emission, J. Geophys. Res., 78, 4547-4559, doi: 10.1029/JA078i022p04547.
Strickland, D. J., J. Bishop, J. S. Evans, T. MAjeed, P. M. Shen, R. J. Cox, R. Link, and, R. E. Huffman, (1999), Atmospheric ultraviolet radiance integrated code (AURIC): Theory, software architecture, inputs, and selected results, J. Quant. Spectrosc. Radiat. Transfer, 62, 689-742, doi: 10.1016/S0022-4073(98)00098-3.
Strobel, D. F., R. R. Meier, M. E. Summers, and, D. J. Strickland, (1991), Nitrogen airglow sources: Comparison of Triton, Titan, and Earth, Geophys. Res. Lett., 18, 689-692, doi: 10.1029/91GL00133.
Strobel, D. F., M. E. Summers, and, X. Zhu, (1992), Titan's upper atmosphere: Structure and ultraviolet emissions, Icarus, 100, 512-526.
Thiemann, E. M. B., et al., (2015), Neutral density response to solar flares at Mars, Geophys. Res. Lett., 42, doi: 10.1002/2015GL066334.
Trajmar, S., D. F. Register, and, A. Chutjian, (1983), Electron scattering by molecules II. Experimental methods and data, Phys. Rep., 97, 220-356.
Westlake, J. H., J. M. Bell, J. H. Waite Jr., R. E. Johnson, J. G. Luhmann, K. E. Mandt, B. A. Magee, and, A. M. Rymer, (2011), Titan's thermospheric response to various plasma environments, J. Geophys. Res., 116, A03318, doi: 10.1029/2010JA016251.