Lo, D. Y.; Lunar and Planetary Laboratory University of Arizona Tucson, Arizona USA
Yelle, R. V.; Lunar and Planetary Laboratory University of Arizona Tucson, Arizona USA
Schneider, N. M.; Laboratory for Atmospheric and Space Physics University of Colorado Boulder Boulder, Colorado USA
Jain, S. K.; Laboratory for Atmospheric and Space Physics University of Colorado Boulder Boulder, Colorado USA
Stewart, A. I. F.; Laboratory for Atmospheric and Space Physics University of Colorado Boulder Boulder, Colorado USA
England, S. L.; Space Sciences Laboratory University of California Berkeley, California USA
Deighan, J. I.; Laboratory for Atmospheric and Space Physics University of Colorado Boulder Boulder, Colorado USA
Stiepen, Arnaud ; Université de Liège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Evans, J. S.; Computational Physics, Inc. Springfield, Virginia USA
Stevens, M. H.; Naval Research Laboratory Washington, District of Columbia USA
Chaffin, M. S.; Laboratory for Atmospheric and Space Physics University of Colorado Boulder Boulder, Colorado USA
Crismani, M. M. J.; Laboratory for Atmospheric and Space Physics University of Colorado Boulder Boulder, Colorado USA
Mcclintock, W. E.; Laboratory for Atmospheric and Space Physics University of Colorado Boulder Boulder, Colorado USA
Clarke, J. T.; Center for Space Physics Boston University Boston, Massachusetts USA
Holsclaw, G. M.; Laboratory for Atmospheric and Space Physics University of Colorado Boulder Boulder, Colorado USA
Lefèvre, F.; Laboratoire ATmosphères, Milieux, Observations Spatiales Centre National de la Recherche Scientifique Paris France
Jakosky, Bruce M.; Laboratory for Atmospheric and Space Physics University of Colorado Boulder Boulder, Colorado USA
Angelats i Coll, M., F. Forget, M. A. Lõpez-Valverde, P. L. Read, and, S. R. Lewis, (2004), Upper atmosphere of Mars up to 120 km: Mars Global Surveyor accelerometer data analysis with the LMD general circulation model, J. Geophys. Res., 109, E01011, doi: 10.1029/2003JE002163.
Banfield, D., B. J. Conrath, M. D. Smith, P. R. Christensen, and, R. J. Wilson, (2003), Forced waves in the Martian atmosphere from MGS TES nadir data, Icarus, 161, 319-345, doi: 10.1016/j.icarus.2004.03.015.
Bougher, S. W., S. Engel, D. P. Hinson, and, J. M. Forbes, (2001), Mars Global Surveyor Radio Science electron density profiles: Neutral atmosphere implications, Geophys. Res. Lett., 28 (16), 3091-3094.
Bougher, S. W., S. Engel, D. P. Hinson, and, J. R. Murphy, (2004), MGS Radio Science electron density profiles: Interannual variability and implications for the Martian neutral atmosphere, J. Geophys. Res., 109, E03010, doi: 10.1029/2003JE002154.
Cahoy, K. L., D. P. Hinson, and, G. L. Tyler, (2007), Characterization of a semidiurnal eastward-propagating tide at high northern latitudes with Mars Global Surveyor electron density profiles, Geophys. Res. Lett., 34, L15201, doi: 10.1029/2007GL030449.
Chapman, S., and, R. Lindzen, (1970), Atmospheric Tides. Thermal and Gravitational, D. Reidel, Dordrecht, Netherlands.
Forbes, J. M., (1995), Tidal and planetary waves, in The Upper Mesosphere and Lower Thermosphere: A Review of Experiment and Theory, edited by, R. M. Johnson, and, T. L. Killeen, pp. 67-87, AGU, Washington, D. C., doi: 10.1029/GM087p0067.
Forbes, J. M., (2004), Tides in the middle and upper atmospheres of Mars and Venus, Adv. Space Res., 33 (2), 125-131, doi: 10.1016/j.asr.2003.05.007.
Forbes, J. M., and, S. Miyahara, (2006), Solar semidiurnal tide in the dusty atmosphere of Mars, J. Atmos. Sci., 63 (7), 1798-1817, doi: 10.1175/JAS3718.1.
Forbes, J. M., F. C. Bridger, S. W. B. Alison, M. E. Hagan, J. L. Hollingsworth, G. M. Keating, and, J. Murphy, (2002), Nonmigrating tides in the thermosphere of Mars, J. Geophys. Res., 107 (E11), 5113, doi: 10.1029/2001JE001582.
Fox, J. L., (2004), CO 2 + dissociative recombination: A source of thermal and nonthermal C on Mars, J. Geophys. Res., 109, A08306, doi: 10.1029/2004JA010514.
Fox, J. L., and, A. Dalgarno, (1979), Ionization, luminosity, and heating of the upper atmosphere of Mars, J. Geophys. Res., 86 (A12), 7315-7333, doi: 10.1029/JA086iA02p00629.
Guzewich, S. D., E. R. Talaat, and, D. W. Waugh, (2012), Observations of planetary waves and nonmigrating tides by the Mars Climate Sounder, J. Geophys. Res., 117, E03010, doi: 10.1029/2011JE003924.
Jakosky, B. M., et al., (2015), The Mars Atmosphere and Volatile EvolutioN (MAVEN) mission, Space Sci. Rev., doi: 10.1007/s11214-015-0139-x.
Jain, S. K., and, A. Bhardwaj, (2012), Impact of solar EUV flux on CO Cameron band and CO 2 + UV doublet emissions in the dayglow of Mars, Planet. Space Sci., 63-64, 110-122, doi: 10.1016/j.pss.2011.08.010.
Jain, S. K., et al., (2015), The structure and variability of Mars upper atmosphere as seen in MAVEN/IUVS dayglow observations, Geophys. Res. Lett., 42, doi: 10.1002/2015GL065419.
McClintock, W. E., N. M. Schneider, G. M. Holsclaw, J. T. Clarke, A. C. Hoskins, A. I. Stewart, F. Montmessin, R. V. Yelle, and, J. Deighan, (2014), The Imaging Ultraviolet Spectrograph (IUVS) for the MAVEN mission, Space Sci. Rev., doi: 10.1007/s11214-014-0098-7.
Moudden, Y., and, J. M. Forbes, (2008), Topographic connections with density waves in Mars' aerobraking regime, J. Geophys. Res., 113, E11009, doi: 10.1029/2008JE003107.
Moudden, Y., and, J. M. Forbes, (2014), Insight into the seasonal asymmetry of nonmigrating tides on Mars, Geophys. Res. Lett., 41, 2631-2636, doi: 10.1029/2008JE003107.
Schneider, N. M., et al., (2015), MAVEN IUVS observations of the aftermath of the Comet Siding Spring meteor shower on Mars, Geophys. Res. Lett., 42, 4755-4761, doi: 10.1002/2015GL063863.
Stevens, M. H., et al., (2015), New observations of molecular nitrogen in the Martian upper atmosphere by IUVS on MAVEN, Geophys. Res. Lett., 42, doi: 10.1002/2015GL065319.
Stiepen, A., J.-C. Gerard, S. W. Bougher, F. Montmessin, B. Hubert, and, J.-L. Bertaux, (2015), Mars thermospheric scale height: CO Cameron and CO 2 + dayglow observations from Mars Express, Icarus, 245, 295-305, doi: 10.1016/j.icarus.2014.09.051.
Wilson, R. J., (2000), Evidence for diurnal period Kelvin waves in the Martian atmosphere from Mars Global Surveyor TES data, Geophys. Res. Lett., 27 (23), 3889-3892, doi: 10.1029/2000GL012028.
Wilson, R. J., (2002), Evidence for nonmigrating thermal tides in the Mars upper atmosphere from the Mars Global Surveyor Accelerometer Experiment, Geophys. Res. Lett., 29 (7), 1120-1123, doi: 10.1029/2001GL013975.
Wilson, R. J., and, K. Hamilton, (1996), Comprehensive model simulation of thermal tides in the Martian atmosphere, J. Atmos. Sci., 53 (9), 1290-1326, doi: 10.1175/1520-0469(1996)053<1290:CMSOTT>2.0.CO;2.
Withers, P., S. W. Bougher, and, G. M. Keating, (2003), The effects of topographically-controlled thermal tides in the Martian upper atmosphere as seen by the MGS accelerometer, Icarus, 164, 14-32, doi: 10.1016/S0019-1035(03)00135-0.
Withers, P., R. Pratt, J.-L. Bertaux, and, F. Montmessin, (2011), Observations of thermal tides in the middle atmosphere of Mars by the SPICAM instrument, J. Geophys. Res., 116, E11005, doi: 10.1029/2011JE003847.
Wolkenberg, P., and, R. J. Wilson, (2014), Mars Climate Sounder observations of wave structure in the north polar middle atmosphere of Mars during the summer season, paper presented at Eighth International Conference on Mars, LPI Contribution No. 1791, Pasadena, Calif., 14-18 July.
Zurek, R. W., (1976), Diurnal tide in the Martian atmosphere, J. Atmos. Sci., 33 (2), 321-337, doi: 10.1175/1520-0469(1976)033<0321:DTITMA>2.0.CO;2.