[en] Perovskite oxides are already widely used in industry and have huge potential for novel device
applications thanks to the rich physical behaviour displayed in these materials. The key to the
functional electronic properties exhibited by perovskites is often the so-called Jahn-Teller distortion.
For applications, an electrical control of the Jahn-Teller distortions, which is so far out of reach,
would therefore be highly desirable. Based on universal symmetry arguments, we determine new
lattice mode couplings that can provide exactly this paradigm, and exemplify the effect from firstprinciples
calculations. The proposed mechanism is completely general, however for illustrative
purposes, we demonstrate the concept on vanadium based perovskites where we reveal an
unprecedented orbital ordering and Jahn-Teller induced ferroelectricity. Thanks to the intimate
coupling between Jahn-Teller distortions and electronic degrees of freedom, the electric field control
of Jahn-Teller distortions is of general relevance and may find broad interest in various functional
devices.
Research Center/Unit :
PhyTheMa
Disciplines :
Physics
Author, co-author :
Varignon, Julien ; Université de Liège > Département de physique > Physique théorique des matériaux
Bristowe, Nicholas ; Université de Liège > Département de physique > Physique théorique des matériaux
Bousquet, Eric ; Université de Liège > Département de physique > Physique théorique des matériaux
Ghosez, Philippe ; Université de Liège > Département de physique > Physique théorique des matériaux
Language :
English
Title :
Coupling and electrical control of structural, orbital and magnetic orders in perovskites
Publication date :
20 October 2015
Journal title :
Scientific Reports
eISSN :
2045-2322
Publisher :
Nature Publishing Group, London, United Kingdom
Volume :
5
Pages :
15364
Peer reviewed :
Peer Reviewed verified by ORBi
Tags :
Tier-1 supercomputer CÉCI : Consortium des Équipements de Calcul Intensif
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Bednorz, J. G., Müller, K. A. Possible high Tc superconductivity in the Ba-La-Cu-O system. Zeitschrift für Physik B Condensed Matter 64 189-193 (1986).
Jin, S. et al. Thousandfold change in resistivity in magnetoresistive La-Ca-Mn-O films. Science 264, 413-415 (1994).
Zubko, P., Gariglio, S., Gabay, M., Ghosez, Ph., Triscone, J. M. Interface physics in complex oxide heterostructures. Annu. Rev. Condens. Matter Phys. 2, 141-165 (2011).
Hwang, H. et al. Emergent phenomena at oxide interfaces. Nature Materials 11, 103-113 (2012).
Tokura, Y., Nagaosa, N. Orbital physics in transition-metal oxides. Science 88, 462-468 (2000).
Dagotto, E. Complexity in strongly correlated electronic systems. Science 309, 257-262 (2005).
Bibes, M., Barthélémy, A. Towards a magnetoelectric memory. Nature Materials 7, 425-426 (2008).
Scott, J. Applications of modern ferroelectrics. Science 315, 954-959 (2007).
Scott, J. Data storage: Multiferroic memories. Nature Materials 6, 256-257 (2007).
Bousquet, E. et al. Improper ferroelectricity in perovskite oxide artificial superlattices. Nature 452, 732-736 (2008).
Fukushima, T., Stroppa, A., Picozzi, S., Perez-Mato, J. M. Large ferroelectric polarization in the new double perovskite NaLaMnWO6 induced by non-polar instabilities. Phys. Chem. Chem. Phys. 13, 12186-12190 (2011).
Rondinelli, J. M., Fennie, C. J. Octahedral rotation-induced ferroelectricity in cation ordered perovskites. Adv. Materials 24, 1961-1968 (2012).
Benedek, N. A., Fennie, C. J. Hybrid improper ferroelectricity: a mechanism for controllable polarization-magnetization coupling. Phys. Rev. Lett. 106, 107204 (2011).
Zanolli, Z., Wojdel, J. C., Iniguez, J & Ghosez, Ph. Electric control of the magnetization in BiFeO3/LaFeO3 superlattices. Phys. Rev. B 88, 060102(R) (2013).
Mulder, A. T., Benedek, N. A., Rondinelli, J. M., Fennie, C. J. Turning ABO3 antiferroelectrics into ferroelectrics: Design rules for practical rotation-driven ferroelectricity in double perovskites and A3B2O7 ruddlesden-popper compounds. Adv. Func. Mater 23, 4810-4820 (2013).
Bellaiche, L., Íniguez, J. Universal collaborative couplings between oxygen-octahedral rotations and antiferroelectric distortions in perovskites. Phys. Rev. B 88, 014104 (2013).
Yang, Y., Íniguez, J., Mao, A.-J., Bellaiche, L. Prediction of a Novel Magnetoelectric Switching Mechanism in Multiferroics. Phys. Rev. Lett. 112, 057202 (2014).
Stroppa, A., Barone, P., Jain, P., Perez-Mato, J. M., Picozzi, S. Hybrid improper ferroelectricity in a multiferroic and magnetoelectric metal-organic framework. Adv. Mater. 25, 2284-2290 (2013).
Tian, Y. et al. High-temperature ferroelectricity and strong magnetoelectric effects in a hybrid organic-inorganic perovskite framework. Phys. Status Solidi RRL 1, 1-6 (2014).
Bersucker, I. et al. The Jahn-Teller Effect: Fundamentals and Implications for Physics and Chemistry Vol. 97 (eds. Köppel, H., Yarkony, D. R., Barentzen, H.) (Springer, 2009).
Onoda, M., Ohta, H., Nagasawa, H. Metallic properties of perovskite oxide SrVO3. Solid State Comm. 79, 281-285 (1991).
Wold, A., Ward, R. Perovskite-type oxides of cobalt, chromium and vanadium with some rare earth elements. J. Am. Chem. Soc. 76, 1029-1030 (1954).
Bordet, P. et al. Structural aspects of the crystallographic-magnetic transition in LaVO3 around 140 K. J. Solid State Chem. 106, 253-270 (1993).
Kawano, H., Yoshizawa, H., Ueda, Y. Magnetic behavior of a mott-insulator YVO3. J. Phys. Soc. Jpn 63, 2857-2861 (1994).
Miyasaka, S., Okimoto, S., Iwama, N., Tokura, Y. Spin-orbital phase diagram of perovskite-type RVO3 (R = Rare-Earth ion or Y). Phys. Rev. B 68, 100406 (2003).
Sage, M. H., Blake, G., Marquina, C., Palstra, T. Competing orbital ordering in RVO3 compounds: High-resolution X-ray diffraction and thermal expansion. Phys. Rev. B 76, 195102 (2007).
Mahajan, A., Johnston, D., Torgeson, D., Borsa, F. Magnetic properties of LaVO3. Phys. Rev. B 46, 10966 (1992).
Ren, Y. et al. Temperature-induced magnetization reversal in a YVO3 single crystal. Nature 396, 441-444 (1998).
Tung, L. et al. Spin, orbital ordering, and magnetic dynamics of LaVO3: Magnetization, heat capacity, and neutron scattering studies. Phys. Rev. B 78, 054416 (2008).
Tung, L., Lees, M., Balakrishnan, G., Paul, D. M. Magnetization reversal in orthovanadate RVO3 compounds (R = La, Nd, Sm, Gd, Er, and Y): Inhomogeneities caused by defects in the orbital sector of quasi-one-dimensional orbital systems. Phys. Rev. B 75, 104404 (2007).
Ulrich, C. et al. Magnetic neutron scattering study of YVO3: Evidence for an orbital peierls state. Phys. Rev. Lett. 91, 257202 (2003).
Arima, T. H., Tokura, Y. Optical study of electronic structure in perovskite-type RMO3 (R = La, Y; M = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu). J. Phys. Soc. Jpn 64, 2488-2501 (1995).
Noguchi, M. et al. Synchrotron X-ray-diffraction study of orbital ordering in YVO3. Phys. Rev. B 62, R9271 (2000).
Khaliullin, G., Horsch, P., Ole?, A. M. Spin order due to orbital fluctuations: Cubic vanadates. Phys. Rev. Lett. 86, 3879 (2001).
Sawada, H., Terakura, K. Orbital and magnetic orderings in localized t2g systems, YTiO3 and YVO3: Comparison with a more itinerant eg LaMnO3. Phys. Rev. B 58, 6831 (1998).
Blake, G. R., Palstra, T., Ren, Y., Nugroho, A. A., Menovsky, A. Transition between orbital orderings in YVO3. Phys. Rev. Lett. 87, 245501 (2001).
De Raychaudhury, M., Pavarini, E., Andersen, O. Orbital fluctuations in the different phases of LaVO3 and YVO3. Phys. Rev. Lett. 99, 126402 (2007).
Carpenter, M. A., Howard, C. J. Symmetry rules and strain/order-parameter relationships for coupling between octahedral tilting and cooperative Jahn-Teller transitions in ABX3 perovskites. i. theory. Acta Cryst. B 65, 134-146 (2009).
Carpenter, M. A., Howard, C. J. Symmetry rules and strain/order-parameter relationships for coupling between octahedral tilting and cooperative Jahn-Teller transitions in ABX3 perovskites. i. application. Acta Cryst. B 65, 147-159 (2009).
Varignon, J., Bristowe, N. C., Ghosez, P. Electric field control of Jahn-Teller distortions in bulk perovskites. arXiv:1505.03413.
Goodenough, J. B. Jahn-Teller phenomena in solids. Annual. Rev. of Materials Science 28, 1-27 (1998).
Goodenough, J. B. An interpretation of the magnetic properties of the perovskite-type mixed crystals La1?xSrxCoO3. J. Phys. Chem. Solids 6, 287-297 (1958).
Kanamori, J. Superexchange interaction and symmetry properties of electron orbitals. J. Phys. Chem. Solids 10, 87-98 (1959).
Kugel, K., Khomskii, D. Crystal-structure and magnetic properties of substances with orbital degeneracy. Zh. Eksp. Teor. Fiz 64, 1429-1439 (1973).
Sage, M. H., Blake, G. R., Nieuwenhuys, G. J., Palstra, T. T. M. Evidence for Electronic Phase Separation between Orbital Orderings in SmVO3. Phys. Rev. Lett. 96, 036401 (2006).
Orobengoa, D., Capillas, C., Aroyo, M. I., Perez-Mato, J. M. Amplimodes: symmetry-mode analysis on the bilbao crystallographic server. J. App. Cryst. 42, 820-833 (2009).
Perez-Mato, J. M., Orobengoa, D., Aroyo, M. Mode crystallography of distorted structures. Acta Cryst. Section A 66, 558-590 (2010).
Glazer, A. The classification of tilted octahedra in perovskites. Acta Cryst. B. 28, 3384-3392 (1972).
Goldschmidt, V. M. Die gesetze der krystallochemie. Naturwissenschaften 14, 477-485 (1926).
Miao, N., Bristowe, N. C., Xu, B., Verstraete, M. J., Ghosez, Ph. First-principles study of the lattice dynamical properties of strontium ruthenate. J. Phys.: Condens. Matter 26, 035401 (2014).
Reehuis, M. et al. Neutron diffraction study of YVO3, NdVO3, and TbVO3. Phys. Rev. B 73, 094440 (2006).
Seim, H., Fjellvag, H. Non-stoichiometric LaVO3. i. synthesis and physical properties. Acta Chem. Scand. 52, 1096-1103 (1998).
Zhang, Q. et al. Impact of the various spin-and orbital-ordering processes on the multiferroic properties of orthovanadate DyVO3. Phys. Rev. B 90, 024418 (2014).
Varignon, J., Bristowe, N. C., Bousquet, E., Ghosez, Ph. Novel magneto-electric multiferroics from first-principles. Comptes Rendus Physique 16, 153-167 (2015).
Ghosez, Ph., Triscone, J. M. Multiferroics: Coupling of three lattice instabilities. Nature Materials 10, 269-270 (2011).
Saha-Dasgupta, T. Ferroic properties in bi-component perovskites: artificial superlattices and naturally forming compounds. J. Phys. Condens. Matter 26, 193201 (2014).
Benedek, N. A., Rondinelli, J. M., Djani, H., Ghosez, Ph. Lightfoot, P. Understanding ferroelectricity in layered perovskites: new ideas and insights from theory and experiments. Dalton Transactions 23, 10543-10558 (2015).
Hatch, D. M., Stokes, H. T. Invariants: program for obtaining a list of invariant polynomials of the order-parameter components associated with irreducible representations of a space group. J. App. Cryst. 36, 951-952 (2003).
Kresse, G., Haffner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558 (1993).
Kresse, G., Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mat. Science 6, 15-50 (1996).
Anisimov, V. I., Zaanen, J., Andersen, O. K. Band theory and Mott insulators: Hubbard U instead of stoner I. Phys. Rev. B 44, 943 (1991).
Liechtenstein, A. I., Anisimov, V. I., Zaanen, J. Density-functional theory and strong interactions: Orbital ordering in Mott-Hubbard insulators. Phys. Rev. B 52, R5467 (1995).
Fang, Z., Nagaosa, N. Quantum versus jahn-teller orbital physics in YVO3 and LaVO3. Phys. Rev. Lett. 93, 176404 (2004).
Stengel, M., Vanderbilt D., Spaldin, N. A. First-principles modeling of ferroelectric capacitors via constrained displacement field calculations. Phys. Rev. B 80, 224110 (2009).
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.