harmonic balance; continuation of periodic solutions; bifurcation detection and tracking; Floquet exponents; quasiperiodic oscillations; detached resonance curves
Abstract :
[en] The harmonic balance (HB) method is widely used in the literature for analyzing the periodic solutions of nonlinear mechanical systems. The objective of this paper is to extend the method for bifurcation analysis, i.e., for the detection and tracking of bifurcations of nonlinear systems. To this end, an algorithm that combines the computation of the Floquet exponents with bordering techniques is developed. A new procedure for the tracking of Neimark-Sacker bifurcations that exploits the properties of eigenvalue derivatives is also proposed. As an application, the frequency response of a structure spacecraft is studied, together with two nonlinear phenomena, namely quasiperiodic oscillations and detached resonance curves. This example illustrates how bifurcation tracking using the HB method can be employed as a promising design tool for detecting and eliminating such undesired behaviors.
Disciplines :
Aerospace & aeronautics engineering
Author, co-author :
Detroux, Thibaut ; Université de Liège > Département d'aérospatiale et mécanique > Laboratoire de structures et systèmes spatiaux
Renson, Ludovic ; Université de Liège > R&D Direction : Chercheurs ULiège en mobilité
Masset, Luc ; Université de Liège > Département d'aérospatiale et mécanique > Laboratoire de structures et systèmes spatiaux
Kerschen, Gaëtan ; Université de Liège > Département d'aérospatiale et mécanique > Laboratoire de structures et systèmes spatiaux
Language :
English
Title :
The harmonic balance method for bifurcation analysis of large-scale nonlinear mechanical systems