[en] Thermoelectrics are promising for addressing energy issues but their exploitation is still hampered by low efficiencies. So far, much improvement has been achieved by reducing the thermal conductivity but less by maximizing the power factor. The latter imposes apparently conflicting requirements on the band structure: a narrow energy distribution and a low effective mass. Quantum confinement in nanostructures andtheintroductionofresonantstatesweresuggestedaspossiblesolutionstothisparadox,butwithlimited success. Here, we propose an original approach to fulfill both requirements in bulk semiconductors. It exploits the highly directional character of some orbitals to engineer the band structure and produce a type of low-dimensional transport similar to that targeted in nanostructures, while retaining isotropic properties. Using first-principle calculations, the theoretical concept is demonstrated in Fe2YZ Heusler compounds, yielding power factors 4 to 5 times larger than in classical thermoelectrics at room temperature. Our findings are totally generic and rationalize the search of alternative compounds with similar behavior. Beyond thermoelectricity, these might be relevant also in the context of electronic, superconducting, or photovoltaic applications.
Disciplines :
Physics
Author, co-author :
Bilc, Daniel ; Université de Liège > Département de physique > Physique théorique des matériaux
Hautier, Geoffroy
Waroquiers, David
Rignanese, Gian-Marco
Ghosez, Philippe ; Université de Liège > Département de physique > Physique théorique des matériaux
Language :
English
Title :
Low-Dimensional Transport and Large Thermoelectric Power Factors in Bulk Semiconductors by Band Engineering of Highly Directional Electronic States
Publication date :
2015
Journal title :
Physical Review Letters
ISSN :
0031-9007
eISSN :
1079-7114
Publisher :
American Physical Society, Ridge, United States - New York
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
T. M. Tritt and M. A. Subramanian, MRS Bull. 31, 188 (2006). MRSBEA 0883-7694 10.1557/mrs2006.44
C. J. Vineis, A. Shakouri, A. Majumdar, and M. G. Kanatzidis, Adv. Mater. 22, 3970 (2010). ADVMEW 0935-9648 10.1002/adma.201000839
H. J. Goldsmid and R. W. Douglas, Br. J. Appl. Phys. 5, 386 (1954). BJAPAJ 0508-3443 10.1088/0508-3443/5/11/303
G. A. Slack, in CRC Handbook Of Thermoelectrics (CRC Press, Boca Raton, 1995), p. 407.
L. D. Hicks and M. S. Dresselhaus, Phys. Rev. B 47, 12727 (1993). PRBMDO 0163-1829 10.1103/PhysRevB.47.12727
G. Chen, M. S. Dresselhaus, G. Dresselhaus, J. P. Fleurial, and T. Caillat, Int. Mater. Rev. 48, 45 (2003). INMREO 0950-6608 10.1179/095066003225010182
J. G. Snyder and E. S. Toberer, Nat. Mater. 7, 105 (2008). NMAACR 1476-1122 10.1038/nmat2090
M. G. Kanatzidis, Chem. Mater. 22, 648 (2010). CMATEX 0897-4756 10.1021/cm902195j
K. Biswas, J. He, I. D. Blum, C.-I. Wu, T. P. Hogan, D. N. Seidman, V. P. Dravid, and M. G. Kanatzidis, Nature (London) 489, 414 (2012). NATUAS 0028-0836 10.1038/nature11439
R. Venkatasubramanian, E. Siivola, V. Colpitts, and B. O'Quinn, Nature (London) 413, 597 (2001). NATUAS 0028-0836 10.1038/35098012
T. C. Harman, P. J. Taylor, M. P. Walsh, and B. E. LaForge, Science 297, 2229 (2002). SCIEAS 0036-8075 10.1126/science.1072886
K. F. Hsu, Science 303, 818 (2004). SCIEAS 0036-8075 10.1126/science.1092963
J. P. Heremans, M. S. Dresselhaus, L. E. Bell, and D. T. Morelli, Nat. Nanotechnol. 8, 471 (2013). NNAABX 1748-3387 10.1038/nnano.2013.129
L. D. Hicks, T. C. Harman, X. Sun, and M. S. Dresselhaus, Phys. Rev. B 53, R10493 (1996). PRBMDO 0163-1829 10.1103/PhysRevB.53.R10493
H. Ohta, Nat. Mater. 6, 129 (2007). NMAACR 1476-1122 10.1038/nmat1821
G. D. Mahan and J. O. Sofo, Proc. Natl. Acad. Sci. U.S.A. 93, 7436 (1996). PNASA6 0027-8424 10.1073/pnas.93.15.7436
D. M. Rowe, V. L. Kuznetsov, L. A. Kuznetsova, and G. Min, J. Phys. D 35, 2183 (2002). JPAPBE 0022-3727 10.1088/0022-3727/35/17/315
D. Bilc, S. Mahanti, E. Quarez, K.-F. Hsu, R. Pcionek, and M. Kanatzidis, Phys. Rev. Lett. 93, 146403 (2004). PRLTAO 0031-9007 10.1103/PhysRevLett.93.146403
S. Ahmad, K. Hoang, and S. D. Mahanti, Phys. Rev. Lett. 96, 056403 (2006). PRLTAO 0031-9007 10.1103/PhysRevLett.96.056403
J. P. Heremans, V. Jovovic, E. S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, and G. J. Snyder, Science 321, 554 (2008). SCIEAS 0036-8075 10.1126/science.1159725
D. I. Bilc and P. Ghosez, Phys. Rev. B 83, 205204 (2011). PRBMDO 1098-0121 10.1103/PhysRevB.83.205204
B. Paul, P. K. Rawat, and P. Banerji, Appl. Phys. Lett. 98, 262101 (2011). APPLAB 0003-6951 10.1063/1.3603962
D. Parker, X. Chen, and D. J. Singh, Phys. Rev. Lett. 110, 146601 (2013). PRLTAO 0031-9007 10.1103/PhysRevLett.110.146601
Y. Nishino, S. Deguchi, and U. Mizutani, Phys. Rev. B 74, 115115 (2006). PRBMDO 1098-0121 10.1103/PhysRevB.74.115115
R. Dovesi, R. Orlando, B. Civalleri, C. Roetti, V. R. Saunders, and C. M. Zicovich-Wilson, Z. Kristallogr. 220, 571 (2005). ZEKRDZ 0044-2968 10.1524/zkri.220.5.571.65065
D. I. Bilc, R. Orlando, R. Shaltaf, G.-M. Rignanese, J. Íñiguez, and Ph. Ghosez, Phys. Rev. B 77, 165107 (2008). PRBMDO 1098-0121 10.1103/PhysRevB.77.165107
G. K. H. Madsen and D. J. Singh, Comput. Phys. Commun. 175, 67 (2006). CPHCBZ 0010-4655 10.1016/j.cpc.2006.03.007
M. Vasundhara, V. Srinivas, and V. V. Rao, Phys. Rev. B 77, 224415 (2008). PRBMDO 1098-0121 10.1103/PhysRevB.77.224415
See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevLett.114.136601, which includes Refs. [30-52], for further technical details and data supporting our results.
I. de P. R. Moreira, R. Dovesi, C. Roetti, V. R. Saunders, and R. Orlando, Phys. Rev. B 62, 7816 (2000). PRBMDO 0163-1829 10.1103/PhysRevB.62.7816
E. Ruiz, M. Llunell, and P. Alemany, J. Solid State Chem. 176, 400 (2003). JSSCBI 0022-4596 10.1016/S0022-4596(03)00238-X
R. Pandey, M. Causa, N. M. Harrison, and M. Seel, J. Phys. Condens. Matter 8, 3993 (1996). JCOMEL 0953-8984 10.1088/0953-8984/8/22/004
T. Bredow, P. Heitjans, and M. Wilkening, Phys. Rev. B 70, 115111 (2004). PRBMDO 1098-0121 10.1103/PhysRevB.70.115111
D. Munoz-Ramo, J. L. Gavartin, and A. L. Shluger, Phys. Rev. B 75, 205336 (2007). PRBMDO 1098-0121 10.1103/PhysRevB.75.205336
A. R. Porter, M. D. Towler, and R. J. Needs, Phys. Rev. B 60, 13534 (1999). PRBMDO 0163-1829 10.1103/PhysRevB.60.13534
Z. Wu and R. E. Cohen, Phys. Rev. B 73, 235116 (2006). PRBMDO 1098-0121 10.1103/PhysRevB.73.235116
A. D. Becke, J. Chem. Phys. 104, 1040 (1996). JCPSA6 0021-9606 10.1063/1.470829
M. Goffinet, P. Hermet, D. I. Bilc, and Ph. Ghosez, Phys. Rev. B 79, 014403 (2009). PRBMDO 1098-0121 10.1103/PhysRevB.79.014403
A. Prikockyte, D. Bilc, P. Hermet, C. Dubourdieu, and P. Ghosez, Phys. Rev. B 84, 214301 (2011). PRBMDO 1098-0121 10.1103/PhysRevB.84.214301
Y. Feng, J. Rhee, T. Wiener, D. Lynch, B. Hubbard, A. Sievers, D. Schlagel, T. Lograsso, and L. Miller, Phys. Rev. B 63, 165109 (2001). PRBMDO 0163-1829 10.1103/PhysRevB.63.165109
S. Dordevic, D. Basov, A. ͆lebarski, M. Maple, and L. Degiorgi, Phys. Rev. B 66, 075122 (2002). PRBMDO 0163-1829 10.1103/PhysRevB.66.075122
P. Blaha, WIEN2k: An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties (Vienna University of Technology, Vienna, 2001).
D. J. Singh and I. I. Mazin, Phys. Rev. B 57, 14352 (1998). PRBMDO 0163-1829 10.1103/PhysRevB.57.14352
C. S. Lue and Y.-K. Kuo, J. Appl. Phys. 96, 2681 (2004). JAPIAU 0021-8979 10.1063/1.1776639
A. Popescu, L. M. Woods, J. Martin, and G. S. Nolas, Phys. Rev. B 79, 205302 (2009). PRBMDO 1098-0121 10.1103/PhysRevB.79.205302
H. Chen, G. Hautier, and G. Ceder, J. Am. Chem. Soc. 134, 19619 (2012). JACSAT 0002-7863 10.1021/ja3040834
G. Hautier, S. Ping Ong, A. Jain, C. J. Moore, and G. Ceder, Phys. Rev. B 85, 155208 (2012). PRBMDO 1098-0121 10.1103/PhysRevB.85.155208
Y. Nishino, M. Kato, S. Asano, K. Soda, M. Hayasaki, and U. Mizutani, Phys. Rev. Lett. 79, 1909 (1997). PRLTAO 0031-9007 10.1103/PhysRevLett.79.1909
C. S. Lue, J. H. Ross, K. D. D. Rathnayaka, D. G. Naugle, S. Y. Wu, and W.-H. Li, J. Phys. Condens. Matter 13, 1585 (2001). JCOMEL 0953-8984 10.1088/0953-8984/13/7/319
C. Lue, R. Liu, M. Song, K. Wu, and Y. Kuo, Phys. Rev. B 78, 165117 (2008). PRBMDO 1098-0121 10.1103/PhysRevB.78.165117
A. ͆lebarski and J. Goraus, Phys. Rev. B 80, 235121 (2009). PRBMDO 1098-0121 10.1103/PhysRevB.80.235121
M. Perrier, A. Deschamps, O. Bouaziz, Y. Brechet, F. Danoix, F. De Geuser, P. Donnadieu, K. Hoummada, and P. Maugis, Metall. Mater. Trans. A 43, 4999 (2012). MMTAEB 1073-5623 10.1007/s11661-012-1337-8
G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996). CMMSEM 0927-0256 10.1016/0927-0256(96)00008-0
J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996). PRLTAO 0031-9007 10.1103/PhysRevLett.77.3865
A. Jain, G. Hautier, C. J. Moore, S. Ping Ong, C. C. Fischer, T. Mueller, K. A. Persson, and G. Ceder, Comput. Mater. Sci. 50, 2295 (2011). CMMSEM 0927-0256 10.1016/j.commatsci.2011.02.023
S. Ping Ong, W. Davidson Richards, A. Jain, G. Hautier, M. Kocher, S. Cholia, D. Gunter, V. L. Chevrier, K. A. Persson, and G. Ceder, Comput. Mater. Sci. 68, 314 (2013). CMMSEM 0927-0256 10.1016/j.commatsci.2012.10.028
M. Mikami, Y. Kinemuchi, K. Ozaki, Y. Terazawa, and T. Takeuch, J. Appl. Phys. 111, 093710 (2012). JAPIAU 0021-8979 10.1063/1.4710990
M. Mikami, K. Kobayashi, T. Kawada, K. Kubo, and N. Uchiyama, J. Electron. Mater. 38, 1121 (2009). JECMA5 0361-5235 10.1007/s11664-009-0724-4
S. Yabuuchi, M. Okamoto, A. Nishide, Y. Kurosaki, and J. Hayakawa, Appl. Phys. Express 6, 025504 (2013). APEPC4 1882-0778 10.7567/APEX.6.025504
Y. Pei, X. Shi, A. Lalonde, H. Wang, L. Chen, and G. J. Snyder, Nature (London) 473, 66 (2011). NATUAS 0028-0836 10.1038/nature09996
S. Wang, Z. Wang, W. Setyawan, N. Mingo, and S. Curtarolo, Phys. Rev. X 1, 021012 (2011). PRXHAE 2160-3308 10.1103/PhysRevX.1.021012
I. Opahle, G. K. H. Madsen, and R. Drautz, Phys. Chem. Chem. Phys. 14, 16197 (2012). PPCPFQ 1463-9076 10.1039/c2cp41826f
D. J. Singh, Sci. Tech. Adv. Mater. 13, 054304 (2012). STAMCV 1468-6996 10.1088/1468-6996/13/5/054304
Y. Z. Chen, Nat. Commun. 4, 1371 (2013). NCAOBW 2041-1723 10.1038/ncomms2394
A. Tebano, E. Fabbri, D. Pergolesi, G. Balestrino, and E. Traversa, ACS Nano 6, 1278 (2012). ANCAC3 1936-0851 10.1021/nn203991q
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.