[en] Flowering is a crucial step in plant development that needs to be carefully regulated to occur at the right time of the year, thus ensuring reproductive success. In Arabidopsis thaliana, several interconnected molecular networks have been disclosed that mediate flowering response to environmental cues, such as photoperiod and temperature, or to endogenous factors, such as plant age or hormones. Many of these signalling pathways are systemic, i.e. involve regulatory mechanisms distant from the shoot apical meristem where floral transition eventually occurs. However, most investigations were focused on the aerial parts of the plant but ignored the roots. The aim of this Ph.D. thesis was to integrate the roots into a comprehensive overview of the genetic control of flowering in Arabidopsis. A prerequisite was to obtain a full list of known flowering-time genes. This step led to the creation of a database of flowering-time genes, which is accessible online and in which users can navigate through data tables or interactive schemes (www.flor-id.org). In the second part of the work, we studied the involvement of the roots in the differential developmental rates of plants grown in hydroponics and on soil. In the third part of the work, we used data mining analyses to show that about 200 flowering-time genes are expressed in the roots of Arabidopsis. Using a complementary approach, we analysed the root transcriptome to identify early changes occurring during the induction of flowering by a photoperiodic treatment. Collectively, the results presented in this work brought new insights in the regulation of flowering time at the whole-organism scale by integrating the “hidden part” of plants in the current landscape of the molecular processes controlling phase transitions in Arabidopsis thaliana.