[en] Small-angle scattering of x-rays (SAXS) or neutrons (SANS) is one of the few experimental methods that can in principle be used for the in situ study at the mesoscopic scale of physicochemical phenomena occurring inside nanoporous solids. However, the potential of the method is often limited by the lack of suitable data analysis methods to convert scattering data into real-space structural information. This is notably the case for most porous materials of practical interest, which exhibit a hierarchical structure with micro, meso, and macropores, with often a secondary material confined in the pores, such as in supported catalysts, as well as fuel-cell and battery materials. In the present contribution, we propose a general analysis of x-ray scattering by this type of material. Assuming that each structural level is statistically independent from the others and has a distinct characteristic length scale, compact mathematical expressions are derived for the scattering of the entire hierarchical structure. The results are particularised to the SAXS analysis of SBA-15 ordered mesoporous silica loaded with copper nitrate as well as to supported catalysts obtained after heat treatment of that material. The SAXS data analysis shows that the nitrate fills both the micro and mesopores of the material, while the metallic copper obtained after heat treatment is found only in the mesopores. Moreover, the mesoscopic-scale spatial distribution of the metal depends on the heat treatment, in line with earlier electron tomography studies. The main ideas underlying the SAXS data analysis were presented in an recent Communication [Gommes et al., Angew. Chem. Intl. Ed. 54 (2015) 11804-11808]. Here we generalise the approach and we provide a comprehensive discussion of how any level in a hierarchical structure contributes to its overall scattering pattern. The results, as well as the general modelling methodology, will be of interest to anyone interested in the quantitative analysis of small-angle scattering data of empty or loaded porous solids, and more generally of any type of hierarchical material.
Disciplines :
Materials science & engineering Chemistry
Author, co-author :
Gommes, Cédric ; Université de Liège > Department of Chemical Engineering > Department of Chemical Engineering
Prieto, Gonzalo
de Jongh, Petra
Language :
English
Title :
Small-Angle Scattering Analysis of Empty or Loaded Hierarchical Porous Materials
Publication date :
2016
Journal title :
Journal of Physical Chemistry. C, Nanomaterials and interfaces
ISSN :
1932-7447
eISSN :
1932-7455
Publisher :
American Chemical Society, Washington, United States - District of Columbia
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Taguchi, A.; Schüth, F. Ordered mesoporous materials in catalysis Microporous Mesoporous Mater. 2005, 77, 1-45 10.1016/j.micromeso.2004.06.030
Schoonheydt, R. A.; Weckhuysen, B. M. Editorial highlight: molecules in confined spaces Phys. Chem. Chem. Phys. 2009, 11, 2794-2798 10.1039/b905015a
Ruthven, D. M.; Reyes, S. C. Adsorptive separation of light olefins from paraffins Microporous Mesoporous Mater. 2007, 104, 59-66 10.1016/j.micromeso.2007.01.005
Holby, E. F.; Sheng, W.; Shao-Horn, Y.; Morgan, D. Pt nanoparticle stability in PEM fuel cells: influence of particle size distribution and crossover hydrogen Energy Environ. Sci. 2009, 2, 865-871 10.1039/b821622n
De Jongh, P. E.; Adelhelm, P. Nanosizing and nanoconfinement: New strategies towards meeting hydrogen storage goals ChemSusChem 2010, 3, 1332-1348 10.1002/cssc.201000248
Antolini, E. Carbon supports for low-temperature fuel cell catalysts Appl. Catal., B 2009, 88, 1-24 10.1016/j.apcatb.2008.09.030
Coussy, O. Deformation and stress from in-pore drying-induced crystallization of salt J. Mech. Phys. Solids 2006, 54, 1517-1547 10.1016/j.jmps.2006.03.002
Fujiyoshi, Y.; Murata, K.; Mitsuoka, K.; Hiral, T.; Walz, T.; Agre, P.; Heymann, J. B.; Engel, A. Structural determinants of water permeation through aquaporin-1 Nature 2000, 407, 599-605 10.1038/35036519
Friedrich, H.; de Jongh, P. E.; Verkleij, A.; de Jong, K. P. Electron tomography for heterogeneous catalysts and related nano materials Chem. Rev. 2009, 109, 1613-1629 10.1021/cr800434t
Midgley, P.; Dunin-Borkowski, R. E. Electron tomography and holography in materials science Nat. Mater. 2009, 8, 271-280 10.1038/nmat2406
Glatter, O.; Kratky, O. Small Angle X-ray Scattering; Academic Press: New York, 1982.
Sivia, D. S. Elementary Scattering Theory; Oxford University Press: Oxford, 2011.
Juanhuix, J.; Bordas, J.; Campmany, J.; Svensson, A.; Bassford, M.; Narayanan, T. Axial disposition of myosin heads in isometrically contracting muscles Biophys. J. 2001, 80, 1429-1441 10.1016/S0006-3495(01)76115-2
Nogales, A.; Hsiao, B.; Somani, R. H.; Srinivas, S.; Tsou, A. H.; Balta-Calleja, F. J.; Ezquerra, T. A. Shear-induced crystallization of isotactic polypropylene with different molecular weight distributions: in situ small- and wide-angle x-ray scattering studies Polymer 2001, 42, 5247-5256 10.1016/S0032-3861(00)00919-8
Hofmann, T.; Wallacher, D.; Huber, P.; Birringer, R.; Knorr, K.; Schreiber, A.; Findenegg, G. H. Small-angle x-ray diffraction of Kr in mesoporous silica: effects of microporosity and surface roughness Phys. Rev. B: Condens. Matter Mater. Phys. 2005, 10.1103/PhysRevB.72.064122
Gommes, C. J.; Roberts, A. P. Structure development of resorcinol-formaldehyde gels: microphase separation or colloid aggregation Phys. Rev. E 2008, 77, 041409 10.1103/PhysRevE.77.041409
Podsiadlo, P.; Lee, B.; Prakapenka, V. B.; Krylova, G. V.; Schaller, R. D.; Demortiére, A.; Shevchenko, E. V. High-pressure structural stability and elasticity of supercrystals self-assembled from nanocrystals Nano Lett. 2011, 11, 579-588 10.1021/nl103587u
Ciccariello, S.; Melnichenko, Y. B.; He, L. Phase behavior of carbon dioxide confined in silica aerogel in the vicinity of the bulk critical point J. Phys. Chem. C 2011, 115, 22336-22346 10.1021/jp205189g
Meir, Y.; Jerby, E.; Barkay, Z.; Ashkenazi, D.; Mitchell, J. B.; Narayanan, T.; Eliaz, N.; LeGarrec, J. L.; Sztucki, M.; Meshcheryakov, O. Observations of ball-lightning-like plasmoids ejected from silicon by localized microwaves Materials 2013, 6, 4011-4030 10.3390/ma6094011
Henzler, K.; Rosenfeldt, S.; Wittemann, A.; Harnau, L.; Finet, S.; Narayanan, T.; Ballauff, M. Directed motion of proteins along tethered polyelectrolytes Phys. Rev. Lett. 2008, 10.1103/PhysRevLett.100.158301
Gommes, C. J.; Prieto, G.; Zecevic, J.; Vanhalle, M.; Goderis, B.; de Jong, K. P.; de Jongh, P. E. Mesoscale characterization of nanoparticles distribution using x-ray scattering Angew. Chem., Int. Ed. 2015, 54, 11804-11808 10.1002/anie.201505359
Beck, J. S.; Vartuli, J. C.; Roth, W. J.; Leonowicz, M. E.; Kresge, C. T.; Schmitt, K. D.; Chu, C. T.; Olson, D. H.; Sheppard, E. W.; McCullen, S. B. et al. A new family of mesoporous molecular sieves prepared with liquid crystal templates J. Am. Chem. Soc. 1992, 114, 10834-10843 10.1021/ja00053a020
Munnik, P.; Wolters, M.; Gabrielsson, A.; Pollington, S. D.; Headdock, G.; Bitter, J. H.; De Jongh, P. E.; De Jong, K. P. Copper nitrate redispersion to arrive at highly active silica-supported copper catalysts J. Phys. Chem. C 2011, 115, 14698-14706 10.1021/jp111778g
Prieto, G.; Zecevic, J.; Friedrich, H.; De Jong, K. P.; De Jongh, P. E. Towards stable catalysts by controlling collective properties of supported metal nanoparticles Nat. Mater. 2012, 12, 34 10.1038/nmat3471
Gommes, C. J.; Goderis, B. CONEX, a program for angular calibration and averaging of two-dimensional powder scattering patterns J. Appl. Crystallogr. 2010, 43, 352-355 10.1107/S0021889810001937
Imperor-Clerc, M.; Davidson, P.; Davidson, A. Existence of a microporous corona around the mesopores of silica-based SBA-15 materials templated by triblock copolymers J. Am. Chem. Soc. 2000, 122, 11925-11933 10.1021/ja002245h
Förster, S.; Timmann, A.; Konrad, M.; Schellbach, C.; Meyer, A.; Funari, S. S.; Mulvaney, P.; Knott, R. Scattering curves of ordered mesoscopic materials J. Phys. Chem. B 2005, 109, 1347-1360 10.1021/jp0467494
Debye, P.; Anderson, H. R.; Brumberger, H. Scattering by an inhomogeneous solid 2. The correlation function and its application J. Appl. Phys. 1957, 28, 679-683 10.1063/1.1722830
Feigin, L. A.; Svergun, D. I. Structure Analysis by Small-Angle X-Ray and Neutron Scattering; Springer: Berlin, 1987.
Ciccariello, S.; Cocco, G.; Benedetti, A.; Enzo, S. Correlation functions of amorphous multiphase systems Phys. Rev. B: Condens. Matter Mater. Phys. 1981, 23, 6474-6485 10.1103/PhysRevB.23.6474
Rouquerol, J.; Avnir, D.; Fairbridge, C. W.; Everett, D. H.; Haynes, J. H.; Pernicone, N.; Ramsay, J. D. F.; Sing, K. S. W.; Unger, K. K. Recommendations for the characterisation of porous solids Pure Appl. Chem. 1994, 66, 1739-1758 10.1351/pac199466081739
Matheron, G. éléments pour une Théorie des Milieux Poreux; Masson: Paris, 1967.
Jeulin, D. Random texture models for material structures Stat. Comput. 2000, 10, 121-132 10.1023/A:1008942325749
Serra, J. Image Analysis and Mathematical Morphology; Academic Press: London, 1982; Vol. 1.
Torquato, S. Random Heterogeneous Materials; Springer: New York, 2000.
Frisch, H. L.; Stillinger, F. H. Contribution to the statistical geometric basis of radiation scattering J. Chem. Phys. 1963, 38, 2200-2207 10.1063/1.1733950
Sonntag, U.; Stoyan, D.; Hermann, H. Random set models in the interpretation of small-angle scattering data Phys. Stat. Sol. A 1981, 68, 281-288 10.1002/pssa.2210680137
Guinier, A. X-Ray Diffraction; Freeman: San Francisco, 1963.
Gommes, C. J.; Friedrich, H.; Wolters, M.; De Jongh, P. E.; De Jong, K. P. Quantitative characterization of pore corrugation in ordered mesoporous materials using image analysis of electron tomograms Chem. Mater. 2009, 21, 1311-1317 10.1021/cm803092c
Galarneau, A.; Cambon, H.; Di Renzo, F.; Fajula, F. True microporosity and surface area of mesoporous SBA-15 silicas as a function of synthesis temperature Langmuir 2001, 17, 8328-8335 10.1021/la0105477
Prass, J.; Müter, D.; Fratzl, P.; Paris, O. Capillarity-driven deformation of ordered nanoporous silica Appl. Phys. Lett. 2009, 95, 083121 10.1063/1.3213564
Gommes, C. J.; Friedrich, H.; de Jongh, P. E.; de Jong, K. P. Two-point correlation function of nanostructured materials via the grey-tone correlation function of electron tomograms: a three-dimensional structural analysis of ordered mesoporous silica Acta Mater. 2010, 58, 770-780 10.1016/j.actamat.2009.09.055
Gommes, C. J.; Pirard, J. P. Morphological models of complex ordered materials based on inhomogeneously clipped Gaussian fields Phys. Rev. E 2009, 80, 061401 10.1103/PhysRevE.80.061401
Gommes, C. J. Adsorption, capillary bridge formation, and cavitation in SBA-15 corrugated mesopores: a Derjaguin-Broekhoff-de Boer analysis Langmuir 2012, 28, 5101-5115 10.1021/la2051228
Jähnert, S.; Müter, D.; Prass, J.; Zickler, G. A.; Paris, O.; Findenegg, G. H. Pore structure and fluid sorption in ordered mesoporous silica. I. Experimental study by in situ small-angle x-ray scattering J. Phys. Chem. C 2009, 113, 15201-15210 10.1021/jp8100392
Müter, D.; Jähnert, S.; Prass, J.; Zickler, G. A.; Paris, O.; Findenegg, G. H. Pore structure and fluid sorption in ordered mesoporous silica. II. Modeling J. Phys. Chem. C 2009, 113, 15211-15217 10.1021/jp810040k
Findenegg, G. H.; Jähnert, S.; Müter, D.; Prass, J.; Paris, O. Fluid adsorption in ordered mesoporous solids determined by in situ small-angle X-ray scattering Phys. Chem. Chem. Phys. 2010, 12, 7211-7220 10.1039/c001541p
Cambedouzou, J.; Diat, O. Quantitative small-angle scattering on mesoporous silica powders: from morphological features to specific surface estimation J. Appl. Crystallogr. 2012, 45, 662-673 10.1107/S0021889812020298
Ciccariello, S.; Goodisman, J.; Brumberger, H. On the Porod law J. Appl. Crystallogr. 1988, 21, 117-128 10.1107/S0021889887010409
Hammouda, B. A new Guinier-Porod model J. Appl. Crystallogr. 2010, 43, 716-719 10.1107/S0021889810015773
Mering, J.; Tchoubar, D. Interpretation de la diffusion centrale des rayons x par les systèmes poreux. I J. Appl. Crystallogr. 1968, 1, 153-165 10.1107/S0021889868005212
Förster, S.; Fischer, S.; Zielske, K.; Schellbach, C.; Sztucki, M.; Lindner, P.; Perlich, J. Calculation of scattering-patterns of ordered nano- and mesoscale materials Adv. Colloid Interface Sci. 2011, 163, 53-83 10.1016/j.cis.2010.12.003
Pedersen, J. S. Analysis of small-angle scattering data from colloids and polymer solutions: modeling and least-squares fitting Adv. Colloid Interface Sci. 1997, 70, 171-210 10.1016/S0001-8686(97)00312-6
Ehrburger-Dolle, F.; Morfin, I.; Geissler, E.; Bley, F.; Livet, F.; Vix-Guterl, C.; Saadallah, S.; Parmentier, J.; Reda, M.; Patarin, J. et al. Small-angle x-ray scattering and electron microscopy investigation of silica and carbon replicas with ordered porosity Langmuir 2003, 19, 4303-4308 10.1021/la0269457
Kittel, C. Introduction to Solid State Physics, 8 th ed.; Wiley: New York, 2003.
Ravikovitch, P. I.; Neimark, A. V. Density functional theory model of adsorption on amorphous and microporous silica materials Langmuir 2006, 22, 11171-11179 10.1021/la0616146
Yuan, P.; Tan, L.; Pan, D.; Guo, Y.; Zhou, L.; Yang, J.; Zou, J.; Yu, C. A systematic study of long-range ordered 3D-SBA-15 materials by electron tomography New J. Chem. 2011, 35, 2456-2461 10.1039/c1nj20146h
Gommes, C. J.; Pirard, J. P.; Goderis, B. Condensation-induced decrease of small-angle x-ray scattering intensity in gelling silica solutions J. Phys. Chem. C 2010, 114, 17350-17357 10.1021/jp104541z
Erko, M.; Wallacher, D.; Brandt, A.; Paris, O. In-situ small-angle neutron scattering study of pore filling and pore emptying in ordered mesoporous silica J. Appl. Crystallogr. 2010, 43, 1-7 10.1107/S0021889809044112
Munnik, P.; De Jongh, P. E.; De Jong, K. P. Control and impact of the nanoscale distribution of supported cobalt particles used in Fischer-Tropsch catalysis J. Am. Chem. Soc. 2014, 136, 7333-7340 10.1021/ja500436y
Millan, A.; Urtizberea, A.; Silva, N. J. D. O.; Boesecke, P.; Natividad, E.; Palacio, F.; Snoeck, E.; Soriano, L.; Gutiérrez, A.; Quirós, C. Multiple-length-scale small-angle x-ray scattering analysis on maghemite nanocomposites J. Appl. Crystallogr. 2007, 40, s696-s700 10.1107/S0021889807009387
Chalal, M.; Ehrburger-Dolle, F.; Morfin, I.; Bley, F.; Aguilar De Armas, M. R.; López Donaire, M. L.; San Roman, J.; Bölgen, N.; Piskin, E.; Ziane, O. et al. SAXS investigation of the effect of temperature on the multiscale structure of a macroporous poly(N-isopropylacrylamide) gel Macromolecules 2010, 43, 2009-2017 10.1021/ma902655h
Scherdel, C.; Scherb, T.; Reichenauer, G. Spherical porous carbon particles derived from suspensions and sediments of resorcinol-formaldehyde particles Carbon 2009, 47, 2244-2252 10.1016/j.carbon.2009.04.015
Pollock, R. A.; Walsh, B. R.; Fry, J.; Ghampson, I. T.; Melnichenko, Y. B.; Kaiser, H.; Pynn, R.; Desisto, W. J.; Wheeler, M. C.; Frederick, B. G. Size and spatial distribution of micropores in SBA-15 using CM-SANS Chem. Mater. 2011, 23, 3828-3840 10.1021/cm200707y
McDonald, M. J.; Smith, J. W. H.; Dahn, J. R. A study of small angle x-ray scattering from impregnated activated carbons Carbon 2014, 68, 452-461 10.1016/j.carbon.2013.11.021
Beaucage, G.; Schaefer, D. W. Structural studies of complex systems using small-angle scattering: a unified Guinier/power-law approach J. Non-Cryst. Solids 1994, 172-174, 797-805 10.1016/0022-3093(94)90581-9
Goderis, B.; Reynaers, H.; Koch, M. H. J.; Mathot, V. B. F. Use of SAXS and linear correlation functions for the determination of the crystallinity and morphology of semicrystalline polymers. Application to linear polyethylene J. Polym. Sci., Part B: Polym. Phys. 1999, 37, 1715-1738 10.1002/(SICI)1099-0488(19990715)37:14<1715::AID-POLB15>3.0.CO;2-F
Gouze, B.; Cambedouzou, J.; Parrès-Maynadié, S.; Rébiscoul, D. How hexagonal mesoporous silica evolves in water on short and long term: role of pore size and silica wall porosity Microporous Mesoporous Mater. 2014, 183, 168-176 10.1016/j.micromeso.2013.08.041
Van De Vyver, S.; Peng, L.; Geboers, J.; Schepers, H.; De Clippel, F.; Gommes, C. J.; Goderis, B.; Jacobs, P. A.; Sels, B. F. Sulfonated silica/carbon nanocomposites as novel catalysts for hydrolysis of cellulose to glucose Green Chem. 2010, 12, 1560-1563 10.1039/c0gc00235f
Albouy, P. A.; Ayral, A. Coupling x-ray scattering and nitrogen adsorption: an interesting approach for the characterization of ordered mesoporous materials. Application to hexagonal silica Chem. Mater. 2002, 14, 3391-3397 10.1021/cm0211453
Zickler, G. A.; Jähnert, S.; Wagermaier, W.; Funari, S. S.; Findenegg, G. H.; Paris, O. Physisorbed films in periodic mesoporous silica studied by in situ synchrotron small-angle diffraction Phys. Rev. B: Condens. Matter Mater. Phys. 2006, 73, 184109 10.1103/PhysRevB.73.184109
Muroyama, N.; Yoshimura, A.; Kubota, Y.; Miyasaka, K.; Ohsuna, T.; Ryoo, R.; Ravikovitch, P. I.; Neimark, A. V.; Takata, M.; Terasaki, O. Argon adsorption on MCM-41 mesoporous crystal studied by in situ synchrotron powder x-ray diffraction J. Phys. Chem. C 2008, 112, 10803-10813 10.1021/jp800385t
Zhao, D.; Huo, Q.; Feng, J.; Chmelka, B.; Stucky, G. Nonionic triblock and star diblock copolymer and oligomeric sufactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures J. Am. Chem. Soc. 1998, 120, 6024-6036 10.1021/ja974025i
Dunlop, J. W. C.; Fratzl, P. Multilevel architectures in natural materials Scr. Mater. 2013, 68, 8-12 10.1016/j.scriptamat.2012.05.045
Kirkensgaard, J. J. K.; Evans, M. E.; De Campo, L. H.; Hyde, S. T. Hierarchical self-assembly of a striped gyroid formed by threaded chiral mesoscale networks Proc. Natl. Acad. Sci. U. S. A. 2014, 111, 1271-1276 10.1073/pnas.1316348111
Ciccariello, S. Small-angle techniques for the asymptotic analysis of x-ray diffraction peaks Acta Crystallogr., Sect. A: Found. Crystallogr. 1990, 46, 175-186 10.1107/S0108767389010676
Solovyov, L. A.; Kirik, S. D.; Shmakov, A. N.; Romannikov, V. N. X-ray structural modeling of silicate mesoporous mesophase material Microporous Mesoporous Mater. 2001, 44-45, 17-23 10.1016/S1387-1811(01)00164-0
Mascotto, S.; Wallacher, D.; Brandt, A.; Hauss, T.; Thommes, M.; Zickler, G. A.; Funari, S. S.; Timmann, A.; Smarsly, B. M. Analysis of microporosity in ordered mesoporous hierarchically structured silica by combining physisorption with in situ small-angle scattering (SAXS and SANS) Langmuir 2009, 25, 12670-12681 10.1021/la9013619
Sundblom, A.; Oliveira, C. L. P.; Palmqvist, A. E. C.; Pedersen, J. S. Modeling in situ small-angle x-ray scattering measurements following the formation of mesostructured silica J. Phys. Chem. C 2009, 113, 7706-7713 10.1021/jp809798c
Matheron, G. Random Sets and Integral Geometry; Wiley: New York, 1975.
Gille, W. Scattering properties and structure functions of Boolean models Comput. Struct. 2011, 89, 2309-2315 10.1016/j.compstruc.2011.08.004
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.