Keywords :
Drug Monitoring; Fluorodeoxyglucose F18/metabolism; Humans; Neoplasms/metabolism; Radioimmunodetection; Radioimmunotherapy; Radionuclide Imaging; Receptors, Cell Surface/analysis; Tomography, Emission-Computed; Tomography, Emission-Computed, Single-Photon
Abstract :
[en] Functional imaging techniques provide complimentary information to that provided by structural studies such as MRI and CT. Functional imaging is based upon known parameters such as physiology, metabolism, biochemistry, pharmacology, and any other biological process. As such, this methodology plays a major role in understanding the basic mechanisms of a multitude of disorders, accurate diagnosis of certain diseases, and developing effective treatment for serious illnesses such as cancer and central nervous system maladies. Although this type of imaging can be performed with various modalities, nuclear procedures have played the leading role in this discipline. Advances made in labeling various radionuclides to biologically important compounds, and development of sophisticated instruments have substantially contributed to the growth of the field of functional imaging. The introduction of positron emission topography (PET), which is based on imaging of compounds labeled with elements such as carbon, nitrogen, and fluorine, has added a major dimension to the evolution of the discipline. This review deals with a brief introduction to the methodologies utilized with radiolabeled tracers and then deals with specific applications of this technology. These applications include assessment of blood flow and metabolism, receptor imaging, elucidating the pathophysiologic process, evaluating role of labeled therapeutic agents, and the potential of these techniques in the development of novel biologic therapies. Functional imaging with radiolabeled tracers will play an increasingly important role in modern medicine, and its impact will be substantial in the management of patients with various disorders.
Scopus citations®
without self-citations
36