Chiti F, Dobson CM (2006) Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem 75:333-366. doi: 10.1146/annurev.biochem.75. 101304.123901
Koo EH, Lansbury PT Jr, Kelly JW (1999) Amyloid diseases: abnormal protein aggregation in neurodegeneration. Proc Natl Acad Sci USA 96:9989-9990. doi: 10.1073/pnas.96.18.9989
Nelson R, Eisenberg D (2006) Recent atomic models of amyloid fibril structure. Curr Opin Struct Biol 16:260-265. doi: 10.1016/j.sbi.2006.03.007
Greenwald J, Riek R (2010) Biology of amyloid: structure, function, and regulation. Structure 18:1244-1260. doi: 10.1016/j.str.2010.08.009
Castellani RJ, Rolston RK, Smith MA (2010) Alzheimer disease. Dis Mon 56:484-546. doi: 10.1016/j.disamonth.2010.06.001
Gao HM, Hong JS (2008) Why neurodegenerative diseases are progressive: uncontrolled inflammation drives disease progression. Trends Immunol 29:357-365. doi: 10.1016/j.it.2008.05.002
Halle A, et al. (2008) The NALP3 inflammasome is involved in the innate immune response to amyloid-beta. Nat Immunol 9:857-865. doi: 10.1038/ni.1636
Zhang W, et al. (2005) Aggregated alpha-synuclein activates microglia: a process leading to disease progression in Parkinson's disease. FASEB J 19:533-542. doi: 10.1096/fj.04-2751com
Masters SL, et al. (2010) Activation of the NLRP3 inflammasome by islet amyloid polypeptide provides a mechanism for enhanced IL-1beta in type 2 diabetes. Nat Immunol 11:897-904. doi: 10.1038/ni.1935
Dinarello CA (2001) IL-Iβ, in the cytokine reference. Oppenheim JJ, Feldman M (eds) Academic Press, London, p 351. doi: 10.1006/rwcy.2000.04004. ftp://195.214.211.1/books/DVD-022/DinarcIIo-C.-IL-1b- %282000%29%28en%29%2824s%29.pdf
Takeuchi O, Akira S (2010) Pattern recognition receptors and inflammation. Cell 140:805-820. doi: 10.1016/j.cell.2010.01.022
Bauernfeind F, et al. (2011) Inflammasomes: current understanding and open questions. Cell Mol Life Sci 68:765-783. doi: 10.1007/s00018-010-0567-4
Meissner F, Molawi K, Zychlinsky A (2010) Mutant superoxide dismutase 1-induced IL-1beta accelerates ALS pathogenesis. Proc Natl Acad Sci USA 107:13046-13050. doi: 10.1073/pnas.1002396107
Granel B, et al. (2006) Lysozyme amyloidosis: report of 4 cases and a review of the literature. Medicine (Baltimore) 85:66-73. doi: 10.1097/01.md.0000200467.51816.6d
Dumoulin M, Kumita JR, Dobson CM (2006) Normal and aberrant biological self-assembly: insights from studies of human lysozyme and its amyloidogenic variants. Acc Chem Res 39:603-610. doi: 10.1021/ar050070g
Johnson RJ, et al. (2005) Rationalising lysozyme amyloidosis: insights from the structure and solution dynamics of T70N lysozyme. J Mol Biol 352:823-836. doi: 10.1016/j.jmb.2005.07.040
Calamai M, et al. (2006) Nature and significance of the interactions between amyloid fibrils and biological polyelectrolytes. Biochemistry 45:12806-12815. doi: 10.1021/bi0610653
Walsh C, et al. (2008) Elucidation of the MD-2/TLR4 interface required for signaling by lipid IVa. J Immunol 181:1245-1254
Goormaghtigh E, Raussens V, Ruysschaert JM (1999) Attenuated total reflection infrared spectroscopy of proteins and lipids in biological membranes. Biochim Biophys Acta 1422:105-185. doi: 10.1016/S0304-4157(99)00004-0
Goormaghtigh E, Cabiaux V, Ruysschaert JM (1990) Secondary structure and dosage of soluble and membrane proteins by attenuated total reflection Fourier-transform infrared spectroscopy on hydrated films. Eur J Biochem 193:409-420. doi: 10.1111/j.1432-1033.1990.tb19354.x
Dumoulin M, et al. (2003) A camelid antibody fragment inhibits the formation of amyloid fibrils by human lysozyme. Nature 424:783-788. doi: 10.1038/nature01870
Mossuto MF, et al. (2010) The non-core regions of human lysozyme amyloid fibrils influence cytotoxicity. J Mol Biol 402:783-796. doi: 10.1016/j.jmb.2010.07.005
Peralvarez-Marin A, Barth A, Graslund A (2008) Time-resolved infrared spectroscopy of pH-induced aggregation of the Alzheimer Abeta(1-28) peptide. J Mol Biol 379:589-596. doi: 10.1016/j.jmb.2008.04.014
Chirgadze YN, Nevskaya NA (1976) Infrared spectra and resonance interaction of amide-I vibration of the parallel-chain pleated sheets. Biopolymers 15:627-636. doi: 10.1002/bip.1976.360150403
Goormaghtigh E, Cabiaux V, Ruysschaert JM (1994) Determination of soluble and membrane protein structure by Fourier transform infrared spectroscopy. I. Assignments and model compounds. Subcell Biochem 23:329-362. doi: 10.1007/978-1-4615-1863-1
Antzutkin ON, et al. (2000) Multiple quantum solid-state NMR indicates a parallel, not antiparallel, organization of beta-sheets in Alzheimer's beta-amyloid fibrils. Proc Natl Acad Sci USA 97:13045-13050. doi: 10.1073/pnas.230315097
Margittai M, Langen R (2008) Fibrils with parallel in-register structure constitute a major class of amyloid fibrils: molecular insights from electron paramagnetic resonance spectroscopy. Q Rev Biophys 41:265-297. doi: 10.1017/S0033583508004733
Celej MS, et al. (2012) Toxic prefibrillar alpha-synuclein amyloid oligomers adopt a distinctive antiparallel beta-sheet structure. Biochem J 443:719-726. doi: 10.1042/BJ20111924
Cerf E, et al. (2009) Antiparallel beta-sheet: a signature structure of the oligomeric amyloid beta-peptide. Biochem J 421:415-423. doi: 10.1042/BJ20090379
Chirgadze YN, Nevskaya NA (1976) Infrared spectra and resonance interaction of amide-I vibration of the antiparallel-chain pleated sheet. Biopolymers 15:607-625. doi: 10.1002/bip.1976.360150402
Biancalana M, Koide S (2010) Molecular mechanism of Thioflavin-T binding to amyloid fibrils. Biochim Biophys Acta 1804:1405-1412. doi: 10.1016/j.bbapap.2010.04.001
Kayed R, et al. (2007) Fibril specific, conformation dependent antibodies recognize a generic epitope common to amyloid fibrils and fibrillar oligomers that is absent in prefibrillar oligomers. Mol Neurodegener 2:18. doi: 10.1186/1750-1326-2-18
Kayed R, et al. (2003) Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 300:486-489. doi: 10.1126/science.1079469
Bauernfeind FG, et al. (2009) Cutting edge: NF-kappaB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J Immunol 183:787-791. doi: 10.4049/jimmunol. 0901363
Mariathasan S, et al. (2006) Cryopyrin activates the inflammasome in response to toxins and ATP. Nature 440:228-232. doi: 10.1038/nature04515
Bryant C, Fitzgerald KA (2009) Molecular mechanisms involved in inflammasome activation. Trends Cell Biol 19:455-464. doi: 10.1016/j.tcb.2009. 06.002
Petrilli V, et al. (2007) Activation of the NALP3 inflammasome is triggered by low intracellular potassium concentration. Cell Death Differ 14:1583-1589. doi: 10.1038/sj.cdd.4402195
Cassel SL, Sutterwala FS (2010) Sterile inflammatory responses mediated by the NLRP3 inflammasome. Eur J Immunol 40:607-611. doi: 10.1002/eji.200940207
Juliana C, et al. (2010) Anti-inflammatory compounds parthenolide and Bay 11-7082 are direct inhibitors of the inflammasome. J Biol Chem 285:9792-9802. doi: 10.1074/jbc.M109.082305
Miyake K (2006) Roles for accessory molecules in microbial recognition by Toll-like receptors. J Endotoxin Res 12:195-204. doi: 10.1179/096805106X118807
Hornung V, et al. (2008) Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat Immunol 9:847-856. doi: 10.1038/ni.1631
Martinon F (2010) Signaling by ROS drives inflammasome activation. Eur J Immunol 40:616-619. doi: 10.1002/eji.200940168
Morishige T, et al. (2010) The effect of surface modification of amorphous silica particles on NLRP3 inflammasome mediated IL-1beta production, ROS production and endosomal rupture. Biomaterials 31:6833-6842. doi: 10.1016/j.biomaterials.2010.05.036
Dostert C, et al. (2008) Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science 320:674-677. doi: 10.1126/science.1156995
Khemtemourian L, Killian JA, Hoppener JW, Engel MF (2008) Recent insights in islet amyloid polypeptide-induced membrane disruption and its role in beta-cell death in type 2 diabetes mellitus. Exp Diabetes Res 2008:421287. doi: 10.1155/2008/421287
Patil SM, Mehta A, Jha S, Alexandrescu AT (2011) Heterogeneous amylin fibril growth mechanisms imaged by total internal reflection fluorescence microscopy. Biochemistry 50:2808-2819. doi: 10.1021/bi101908m
Hebda JA, Miranker AD (2009) The interplay of catalysis and toxicity by amyloid intermediates on lipid bilayers: insights from type II diabetes. Annu Rev Biophys 38:125-152. doi: 10.1146/annurev.biophys.050708.133622
Knight JD, Miranker AD (2004) Phospholipid catalysis of diabetic amyloid assembly. J Mol Biol 341:1175-1187. doi: 10.1016/j.jmb.2004.06.086
Chapman MR, et al. (2002) Role of Escherichia coli curli operons in directing amyloid fiber formation. Science 295:851-855. doi: 10.1126/science.1067484
Tukel C, et al. (2009) Responses to amyloids of microbial and host origin are mediated through toll-like receptor 2. Cell Host Microbe 6:45-53. doi: 10.1016/j.chom.2009.05.020
Udan ML, Ajit D, Crouse NR, Nichols MR (2008) Toll-like receptors 2 and 4 mediate Abeta(1-42) activation of the innate immune response in a human monocytic cell line. J Neurochem 104:524-533. doi: 10.1111/j.1471-4159.2007. 05001.x
Luo J, et al. (2012) Lateral clustering of TLR3:dsRNA signaling units revealed by TLR3ecd:3Fabs quaternary structure. J Mol Biol doi. doi: 10.1016/j.jmb.2012.05.006
Maitra R, et al. (2009) Endosomal damage and TLR2 mediated inflammasome activation by alkane particles in the generation of aseptic osteolysis. Mol Immunol 47:175-184. doi: 10.1016/j.molimm.2009.09.023
Dobson CM (1999) Protein misfolding, evolution and disease. Trends Biochem Sci 24:329-332. doi: 10.1016/S0968-0004(99)01445-0
Gebbink MF, Claessen D, Bouma B, Dijkhuizen L, Wosten HA (2005) Amyloids - a functional coat for microorganisms. Nat Rev Microbiol 3:333-341. doi: 10.1038/nrmicro1127