thermalization; electron recoil; dark atoms; milli-charges; radiative capture; dark U(1)
Abstract :
[en] The results of the direct searches for dark matter are reinterpreted in the
framework of composite dark matter, i.e. dark matter particles that form
neutral bound states, generically called “dark atoms”.
Two different scenarios are presented: milli-interacting dark matter and
dark anti-atoms. In both of them, dark matter interacts sufficiently strongly
with terrestrial matter to be stopped in it before reaching underground detec-
tors, which are typically located at a depth of 1 km. As they drift towards the
center of the earth because of gravity, these thermal dark atoms are radiatively
captured by the atoms of the active medium of underground detectors, which
causes the emission of photons that produce the signals through their interac-
tions with the electrons of the medium. This provides a way of reinterpreting
the results in terms of electron recoils instead of nuclear recoils.
The two models involve milli-charges and are able to reconcile the most
contradictory experiments. We determine, for each model, the regions in the
parameter space that reproduce the experiments with positive results in con-
sistency with the constraints of the experiments with negative results.
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Wallemacq, Quentin ; Université de Liège > Département d'astrophys., géophysique et océanographie (AGO) > Inter. fondamentales en physique et astrophysique (IFPA)
Language :
English
Title :
Composite dark matter and direct-search experiments
Publication date :
06 November 2015
Journal title :
International Journal of Modern Physics. D, Gravitation, Astrophysics and Cosmology
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
MACHO Collab. (C. Alcock et al.), Astrophys. J. 542 (2000) 281, arXiv:astro-ph/0001272.
EROS Collab. (M. Moniez), Final results from the EROS microlensing search for massive compact objects, in Proc. Science: Identification of Dark Matter 2008 (IDM 2008), Stockholm, Sweden, p. 053.
Planck Collab. (P. A. R. Ade et al.), Astron. Astrophys. 571 (2014) A16, arXiv: 1303.5076 [astro-ph.CO].
CDMS Collab. (D. Akerib et al.), Phys. Rev. D 73 (2006) 011102, arXiv:astro-ph/0509269.
XENON100 Collab. (E. Aprile et al.), Phys. Rev. Lett. 111 (2013) 021301, arXiv: 1301.6620 [astro-ph.CO].
LUX Collab. (D. S. Akerib et al.), Phys. Rev. Lett. 112 (2014) 091303, arXiv: 1310.8214 [astro-ph.CO].
XENON100 Collab. (E. Aprile et al.), Phys. Rev. Lett. 109 (2012) 181301, arXiv: 1207.5988 [astro-ph.CO].
SuperCDMS Collab. (R. Agnese et al.), Phys. Rev. Lett. 112 (2014) 241302, arXiv: 1402.7137 [hep-ex].
CRESST-II Collab. (G. Angloher et al.), Eur. Phys. J. C 74 (2014) 3184, arXiv: 1407.3146 [astro-ph.CO].
C. Savage, G. Gelmini, P. Gondolo and K. Freese, J. Cosmol. Astropart. Phys. 0904 (2009) 010, arXiv:0808.3607 [astro-ph].
CoGeNT Collab. (C. E. Aalseth et al.), Phys. Rev. D 88 (2013) 012002, arXiv: 1208.5737 [astro-ph.CO].
CDMS Collab. (R. Agnese et al.), Phys. Rev. Lett. 111 (2013) 251301, arXiv: 1304.4279 [hep-ex].
G. Angloher et al., Eur. Phys. J. C 72 (2012) 1971, arXiv:1109.0702 [astro-ph.CO].
A. Brown, S. Henry, H. Kraus and C. McCabe, Phys. Rev. D 85 (2012) 021301, arXiv: 1109.2589 [astro-ph.CO].
R. Bernabei et al., Eur. Phys. J. C 73 (2013) 2648, arXiv:1308.5109 [astro-ph.GA].
P. Panci, Adv. High Energy Phys. 2014 (2014) 681312, arXiv:1402.1507 [hep-ph].
J. M. Cline, Z. Liu and W. Xue, Phys. Rev. D 85 (2012) 101302, arXiv:1201.4858 [hep-ph].
R. Foot, Phys. Lett. B 728 (2014) 45, arXiv:1305.4316 [astro-ph.CO].
M. McCullough and L. Randall, J. Cosmol. Astropart. Phys. 1310 (2013) 058, arXiv: 1307.4095 [hep-ph].
M. Y. Khlopov, A. G. Mayorov and E. Y. Soldatov, Int. J. Mod. Phys. D 19 (2010) 1385, arXiv:1003.1144 [astro-ph.CO].
M. Y. Khlopov, A. G. Mayorov and E. Y. Soldatov, Prespacetime J. 1 (2010) 1403, arXiv:1012.0934 [astro-ph.CO].
J.-R. Cudell, M. Y. Khlopov and Q. Wallemacq, Mod. Phys. Lett. A 29 (2014) 1440006, arXiv:1411.1655 [astro-ph.HE].
J.-R. Cudell, M. Y. Khlopov and Q. Wallemacq, Adv. High Energy Phys. 2014 (2014) 869425, arXiv:1401.5228 [hep-ph].
J.-R. Cudell, M. Khlopov and Q. Wallemacq, arXiv:1211.5684 [astro-ph.CO].
J.-R. Cudell, M. Khlopov and Q. Wallemacq, arXiv:1412.6030 [hep-ph].
D. E. Kaplan, G. Z. Krnjaic, K. R. Rehermann and C. M. Wells, J. Cosmol. Astropart. Phys. 1110 (2011) 011, arXiv:1105.2073 [hep-ph].
Y. Bai and P. J. Fox, J. High Energy Phys. 0911 (2009) 052, arXiv:0909.2900 [hep-ph].
J. R. Cudell and M. Yu. Khlopov, Int. J. Mod. Phys. D 24 (2015) 1545007.
R. A. Flores and J. R. Primack, Astrophys. J. 427 (1994) L1, arXiv:astro-ph/9402004.
B. Moore, Nature 370 (1994) 629.
J. Miralda-Escudé, Astrophys. J. 564 (2002) 60, arXiv:astro-ph/0002050.
D. A. Buote, T. E. Jeltema, C. R. Canizares and G. P. Garmire, Astrophys. J. 577 (2002) 183, arXiv:astro-ph/0205469.
M. Markevitch et al., Astrophys. J. 606 (2004) 819, arXiv:astro-ph/0309303 [astro-ph].
S. W. Randall, M. Markevitch, D. Clowe, A. H. Gonzalez and M. Bradac, Astrophys. J. 679 (2008) 1173, arXiv:0704.0261 [astro-ph].
D. Harvey, R. Massey, T. Kitching, A. Taylor and E. Tittley, Science 347 (2015) 1462, arXiv:1503.07675 [astro-ph.CO].
B. Holdom, Phys. Lett. B 166 (1986) 196.
T. D. Lee and C. N. Yang, Phys. Rev. 104 (1956) 254.
P. Ciarcelluti and Q. Wallemacq, Phys. Lett. B 729 (2014) 62, arXiv:1211.5354 [astro-ph.CO].
P. Ciarcelluti and Q. Wallemacq, Adv. High Energy Phys. 2014 (2014) 148319, arXiv: 1401.4763 [astro-ph.CO].
J. Fan, A. Katz, L. Randall and M. Reece, Phys. Dark Univ. 2 (2013) 139, arXiv: 1303.1521 [astro-ph.CO].
DAMA Collab. (R. Bernabei et al.), Nucl. Instrum. Methods Phys. Res. A 592 (2008) 297, arXiv:0804.2738 [astro-ph].
R. Bernabei et al., Phys. Lett. B 389 (1996) 757.
P. S. Barbeau, J. I. Collar and O. Tench, J. Cosmol. Astropart. Phys. 0709 (2007) 009, arXiv:nucl-ex/0701012.
CoGeNT Collab. (C. E. Aalseth et al.), arXiv:1401.3295 [astro-ph.CO].
CoGeNT Collab. (C. E. Aalseth et al.), Phys. Rev. Lett. 106 (2011) 131301, arXiv: 1002.4703 [astro-ph.CO].
C. E. Aalseth et al., Phys. Rev. Lett. 107 (2011) 141301, arXiv:1106.0650 [astro-ph.CO].
XENON100 Collab. (E. Aprile et al.), Astropart. Phys. 35 (2012) 573, arXiv: 1107.2155 [astro-ph.IM].
LUX Collab. (D. S. Akerib et al.), Nucl. Instrum. Methods Phys. Res. A 704 (2013) 111, arXiv:1211.3788 [physics.ins-det].
H. M. Araujo, V. A. Kudryavtsev, N. J. C. Spooner and T. J. Sumner, Nucl. Instrum. Methods Phys. Res. A 545 (2005) 398, arXiv:hep-ex/0411026.
CDMS Collab. (Z. Ahmed et al.), Phys. Rev. Lett. 102 (2009) 011301, arXiv: 0802.3530 [astro-ph].
CDMS-II Collab. (Z. Ahmed et al.), Phys. Rev. Lett. 106 (2011) 131302, arXiv: 1011.2482 [astro-ph.CO].
P. F. Smith, J. R. J. Bennett, G. J. Homer, J. D. Lewin, H. E. Walford and W. A. Smith, Nucl. Phys. B 206 (1982) 333.
P. Mueller, L.-B. Wang, R. J. Holt, Z.-T. Lu, T. P. O'Connor and J. P. Schiffer, Phys. Rev. Lett. 92 (2004) 022501, arXiv:nucl-ex/0302025.
D. Feldman, Z. Liu and P. Nath, Phys. Rev. D 75 (2007) 115001, arXiv:hep-ph/0702123.
Particle Data Group (C. Amsler et al.), Phys. Lett. B 667 (2008) 1.
G. Erkol, R. Timmermans and T. Rijken, Phys. Rev. C 72 (2005) 035209, arXiv: nucl-th/0603056.
S. D. McDermott, H.-B. Yu and K. M. Zurek, Phys. Rev. D 83 (2011) 063509, arXiv: 1011.2907 [hep-ph].
K. Sigurdson, M. Doran, A. Kurylov, R. R. Caldwell and M. Kamionkowski, Phys. Rev. D 70 (2004) 083501, arXiv:astro-ph/0406355.
E. Segre, Nuclei and Particles, 2nd edn. (W. A. Benjamin, New York, 1977).
N. Fröman and P. O. Fröman, JWKB Approximation: Contributions to the Theory (North-Holland, 1965).
R. Essig et al., arXiv:1311.0029 [hep-ph].
A. Dolgov, S. Dubovsky, G. Rubtsov and I. Tkachev, Phys. Rev. D 88 (2013) 117701, arXiv:1310.2376 [hep-ph].
CLEO Collab. (R. Balest et al.), Phys. Rev. D 51 (1995) 2053.
BaBar Collab. (B. Aubert et al.), arXiv:0808.0017 [hep-ex].
CLEO Collab. (J. Insler et al.), Phys. Rev. D 81 (2010) 091101, arXiv:1003.0417 [hep-ex].
P. J. Brown, A. G. Fox, E. N. Maslen, M. A. O'Keefe and B. T. M. Willis, International Tables for Crystallography: Mathematical, Physical and Chemical Tables, Vol. C, 1st edn. (International Union of Crystallography, 2006).
J. Dormand and P. Prince, J. Comput. Appl. Math. 6 (1980) 19.
DAMA-LIBRA Collab. (R. Bernabei et al.), Eur. Phys. J. C 74 (2014) 2827, arXiv: 1403.4733 [astro-ph.GA].
J. H. Davis, C. McCabe and C. Boehm, J. Cosmol. Astropart. Phys. 2014 (2014) 014, arXiv:1405.0495 [hep-ph].
D. Javorsek, D. Elmore, E. Fischbach, D. Granger, T. Miller, D. Oliver and V. Teplitz, Phys. Rev. D 65 (2002) 072003.
E. Bulbul et al., Astrophys. J. 789 (2014) 13, arXiv:1402.2301 [astro-ph.CO].
A. Boyarsky, O. Ruchayskiy, D. Iakubovskyi and J. Franse, Phys. Rev. Lett. 113 (2014) 251301, arXiv:1402.4119 [astro-ph.CO].
C. Cuesta et al., Eur. Phys. J. C 74 (2014) 3150, arXiv:1407.5125 [astro-ph.IM].
J. Amare et al., Nucl. Instrum. Methods Phys. Res. A 742 (2014) 187, arXiv: 1308.3478 [physics.ins-det].
DM-Ice17 Collab. (J. Cherwinka et al.), Phys. Rev. D 90 (2014) 092005, arXiv: 1401.4804 [astro-ph.IM].
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.