[en] We study the spatial Brand-and-Bound algorithm for the global optimization of nonlinear
problems. In particular we are interested in a method to find quickly good feasible solutions.
Most spatial Branch-and-Bound-based solvers use a non global solver at a few nodes to try to
find better incumbents. We show that it is possible to improve the branching rules and the
nodes priority by exploiting the solutions from the non global solver. We also propose several
smart adaptive strategies to choose when to run the non global solver. We show that despite
the time spent in solving many more NLP problems in the nodes, the new strategies enable
the algorithm to find the first good incumbents much faster and to prove the global optimality
faster. NLP instances from the COCONUT library are benchmarked. All experiments are run
using the open source solver Couenne.
Disciplines :
Computer science
Author, co-author :
Gerard, Damien ; Université de Liège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Dép. d'électric., électron. et informat. (Inst.Montefiore)
Köppe, Matthias; University of Davis - UC Davis
Louveaux, Quentin ; Université de Liège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes et modélisation : Optimisation discrète
Language :
English
Title :
Feasibility-oriented Branching Strategies for Global Optimization
Publication date :
13 July 2015
Event name :
International Symposium on Mathematical Programming (ISMP)