[en] Echinoids are common members of Antarctic zoobenthos, and different groups can
show important trophic diversity. As part of the ANT-XXIX/3 cruise of RV Polarstern,
trophic plasticity of sea urchins was studied in three neighbouring regions (Drake
Passage, Bransfield Strait and Weddell Sea) featuring several depth-related habitats
offering different trophic environments to benthic consumers. Three families with
contrasting feeding habits (Cidaridae, Echinidae and Schizasteridae) were studied. Gut
content examination and stable isotopes ratios of C and N suggest that each of the
studied families showed a different response to variation in environmental and food
conditions. Schizasteridae trophic plasticity was low, and these sea urchins were bulk
sediment feeders relying on sediment-associated organic matter in all regions and/or
depth-related habitats. Cidaridae consumed the most animal-derived material. Their
diet varied according to the considered area, as sea urchins from Bransfield Strait
relied mostly on living and/or dead animal material, while specimens from Weddell Sea
fed on a mixture of dead animal material and other detritus. Echinidae also showed
important trophic plasticity. They fed on various detrital items in Bransfield Strait, and
selectivity of ingested material varied across depth-related habitats. In Weddell Sea,
stable isotopes revealed that they mostly relied on highly 13C-enriched food items,
presumably microbially-reworked benthic detritus. The differences in adaptive
strategies could lead to family-specific responses of Antarctic echinoids to
environmental and food-related changes.
Research Center/Unit :
MARE - Centre Interfacultaire de Recherches en Océanologie - ULiège
Boecklen WJ, Yarnes CT, Cook BA, James AC (2011) On the use of stable isotopes in trophic ecology. Annu Rev Ecol Evol Syst 42:411–440. doi:10.1146/annurev-ecolsys-102209-144726
Bracher A, Huntemann M (2015) Chlorophyll-a concentration and sea ice concentration at AGT stations during POLARSTERN cruise ANT-XXIX/3 derived from the merged daily Full Product Set (FPS) of the GlobColour Archive. Accessed 16 Nov 2015. doi:10.1594/PANGAEA.847994
Brand TE (1976) Trophic relationships of selected benthic marine invertebrates and foraminifera in Antarctica. Antarct J US 11:24–26
Brey T, Gutt J (1991) The genus Sterechinus (Echinodermata: Echinoidea) on the Weddell Sea shelf and slope (Antarctica): distribution, abundance and biomass. Polar Biol 11:227–232. doi:10.1007/BF00238455
Coplen TB (2011) Guidelines and recommended terms for expression of stable-isotope-ratio and gas-ratio measurement results. Rapid Commun Mass Spectrom 25:2538–2560. doi:10.1002/rcm.5129
Corbisier TN, Petti MAV, Skowronski RSP, Brito TAS (2004) Trophic relationships in the nearshore zone of Martel Inlet (King George Island, Antarctica): δ13C stable-isotope analysis. Polar Biol 27:75–82. doi:10.1007/s00300-003-0567-z
David B, Choné T, Festeau A, Mooi R, De Ridder C (2005) Biodiversity of Antarctic echinoids: a comprehensive and interactive database. Sci Mar 69:201–203
De Ridder C, Foret T (2001) Non-parasitic symbioses between echinoderms and bacteria. In: Lawrence JM, Jangoux M (eds) Echinoderm studies. Balkema, Rotterdam, pp 111–169
De Ridder C, Lawrence JM (1982) Food and feeding mechanisms: Echinoidea. In: Jangoux M, Lawrence JM (eds) Echinoderm nutrition. Balkema, Rotterdam, pp 57–115
De Ridder C, Jangoux M, Van Impe E (1985) Food selection and absorption efficiency in the spatangoid echinoid, Echinocardium cordatum (Echinodermata). In: Keegan B, O’Connor B (eds) Proceedings of the 5th international conference, Galway, 1984. Balkema, Rotterdam, pp 245–251
DeNiro MJ, Epstein S (1981) Infuence of diet on the distribution of nitrogen isotopes in animals. Geochim Cosmochim Acta 45:341–351. doi:10.1016/0016-7037(81)90244-1
Dorschel B, Guutt J, Huhn O, Bracher A, Huntemann M, Hunneke W, Gebhardt C, Schröder M, Herr H (2015) Environmental information for a marine ecosystem research approach for the northern Antarctic Peninsula (RV Polarstern expedition PS81, ANT-XXIX/3). Polar Biol. doi:10.1007/s00300-015-1861-2
Dunton KH (2001) δ15N and δ13C measurements of Antarctic Peninsula fauna: trophic relationships and assimilation of benthic seaweeds. Am Zool 41:99–112. doi:10.1093/icb/41.1.99
Fantle MS, Dittel AI, Schwalm SM, Epifanio CE, Fogel ML (1999) A food web analysis of the juvenile blue crab, Callinectes sapidus, using stable isotopes in whole animals and individual amino acids. Oecologia 120:416–426. doi:10.1007/s004420050874
Gibson JAE, Trull T, Nichols PD, Summons RE, McMinn A (1999) Sedimentation of 13C-rich organic matter from Antarctic sea-ice algae: a potential indicator of past sea-ice extent. Geology 27:331. doi:10.1130/0091-7613(1999)027<0331:SOCROM>2.3.CO;2
Glover AG, Smith CR, Mincks SL, Sumida PYG, Thurber AR (2008) Macrofaunal abundance and composition on the West Antarctic Peninsula continental shelf: evidence for a sediment “food bank” and similarities to deep-sea habitats. Deep Sea Res Part II Top Stud Oceanogr 55:2491–2501. doi:10.1016/j.dsr2.2008.06.008
Gutt J (2007) Antarctic macro-zoobenthic communities: a review and an ecological classification. Antarct Sci 19:165. doi:10.1017/S0954102007000247
Gutt J (2013) The expedition of the research vessel “Polarstern” to the Antarctic in 2013 (ANT-XXIX/3). Berichte zur Polar- und Meeresforsch 665:1–151
Gutt J, Barnes D, Lockhart SJ, van de Putte A (2013) Antarctic macrobenthic communities: a compilation of circumpolar information. Nat Conserv 4:1–13. doi:10.3897/natureconservation.4.4499
Hedges JI, Stern JH (1984) Carbon and nitrogen determinations of carbonate-containing solids. Limnol Oceanogr 29:657–663. doi:10.4319/lo.1984.29.3.0657
Hobson K, Welch H (1992) Determination of trophic relationships within a high Arctic marine food web using δ13C and δ15N analysis. Mar Ecol Prog Ser 84:9–18. doi:10.3354/meps084009
Hughes AD, Brunner L, Cook EJ, Kelly MS, Wilson B (2012) Echinoderms display morphological and behavioural phenotypic plasticity in response to their trophic environment. PLoS ONE 7:e41243. doi:10.1371/journal.pone.0041243
Jacob U, Terpstra S, Brey T (2003) High-Antarctic regular sea urchins—the role of depth and feeding in niche separation. Polar Biol 26:99–104. doi:10.1007/s00300-002-0453-0
Jaschinski S, Hansen T, Sommer U (2008) Effects of acidification in multiple stable isotope analyses. Limnol Oceanogr Methods 6:12–15. doi:10.4319/lom.2008.6.12
Lawrence JM, Sammarco PW (1982) Effects of feeding on the environment: Echinoidea. In: Jangoux M, Lawrence JM (eds) Echinoderm nutrition. Balkema, Rotterdam, pp 499–519
Lawrence JM, Lawrence AL, Watts SA (2013) Feeding, digestion and digestibility of sea urchins. In: Lawrence JM (ed) Sea urchins: biology and ecology. Academic Press, London, pp 135–154
Lockhart S, Jones C (2008) Biogeographic patterns of benthic invertebrate megafauna on shelf areas within the Southern Ocean Atlantic sector. CCAMLR Sci 15:167–192
Lovvorn J, Cooper L, Brooks M, De Ruyck C, Bump J, Grebmeier J (2005) Organic matter pathways to zooplankton and benthos under pack ice in late winter and open water in late summer in the north-central Bering Sea. Mar Ecol Prog Ser 291:135–150. doi:10.3354/meps291135
Mateo MA, Serrano O, Serrano L, Michener RH (2008) Effects of sample preparation on stable isotope ratios of carbon and nitrogen in marine invertebrates: implications for food web studies using stable isotopes. Oecologia 157:105–115. doi:10.1007/s00442-008-1052-8
Mincks SL, Smith CR, DeMaster DJ (2005) Persistence of labile organic matter and microbial biomass in Antarctic shelf sediments: evidence of a sediment “food bank”. Mar Ecol Prog Ser 300:3–19. doi:10.3354/meps300003
Mincks SL, Smith CR, Jeffreys RM, Sumida PYG (2008) Trophic structure on the West Antarctic Peninsula shelf: detritivory and benthic inertia revealed by δ13C and δ15N analysis. Deep Sea Res Part II Top Stud Oceanogr 55:2502–2514. doi:10.1016/j.dsr2.2008.06.009
Norkko A, Thrush SF, Cummings VJ, Gibbs MM, Andrew NL, Norkko J, Schwarz AM (2007) Trophic structure of coastal Antarctic food webs associated with changes in sea ice and food supply. Ecology 88:2810–2820. doi:10.1890/06-1396.1
Nyssen F, Brey T, Lepoint G, Bouquegneau JM, De Broyer C, Dauby P (2002) A stable isotope approach to the eastern Weddell Sea trophic web: focus on benthic amphipods. Polar Biol 25:280–287. doi:10.1007/s00300-001-0340-0
Parkinson CL, Cavalieri DJ (2012) Antarctic sea ice variability and trends, 1979–2010. Cryosphere 6:871–880. doi:10.5194/tc-6-871-2012
Plante CJ, Jumars PA, Baross JA (1990) Digestive associations between marine detritivores and bacteria. Annu Rev Ecol Syst 21:93–127. doi:10.1146/annurev.es.21.110190.000521
Rau GH, Sullivan CW, Gordon LI (1991) δ13C and δ15N variations in Weddell Sea particulate organic matter. Mar Chem 35:355–369. doi:10.1016/S0304-4203(09)90028-7
Riebesell U, Schloss I, Smetacek V (1991) Aggregation of algae released from melting sea ice: implications for seeding and sedimentation. Polar Biol. doi:10.1007/BF00238457
Saucède T, Mooi R, David B (2006) Phylogeny and origin of Jurassic irregular echinoids (Echinodermata: Echinoidea). Geol Mag 144:333–359. doi:10.1017/S0016756806003001
Smith CR, Mincks S, DeMaster DJ (2008) The FOODBANCS project: introduction and sinking fluxes of organic carbon, chlorophyll-a and phytodetritus on the western Antarctic Peninsula continental shelf. Deep Sea Res Part II Top Stud Oceanogr 55:2404–2414. doi:10.1016/j.dsr2.2008.06.001
Turner J, Colwell SR, Marshall GJ, Lachlan-Cope TA, Carleton AM, Jones PD, Lagun V, Reid PA, Iagovkina S (2005) Antarctic climate change during the last 50 years. Int J Climatol 25:279–294. doi:10.1002/joc.1130
Veit-Köhler G, Guilini K, Peeken I, Quillfeldt P, Mayr C (2013) Carbon and nitrogen stable isotope signatures of deep-sea meiofauna follow oceanographical gradients across the Southern Ocean. Prog Oceanogr 110:69–79. doi:10.1016/j.pocean.2013.01.001
Wangensteen OS, Turon X, García-Cisneros A, Recasens M, Romero J, Palacín C (2011) A wolf in sheep’s clothing: carnivory in dominant sea urchins in the Mediterranean. Mar Ecol Prog Ser 441:117–128. doi:10.3354/meps09359