[en] The critical properties of monovalent doped manganite Pr0.55K0.05Sr0.4MnO3 around the
paramagnetic to ferromagnetic phase transition were investigated through various methods: the
modified Arrott plots (MAP), the Kouvel-Fisher method and the critical isotherm analysis. Data
obtained near Tc were examined in the framework of the mean field theory, the 3D–Heisenberg
model, the 3D–Ising model, and tricritical mean field. The deduced critical exponents values
obtained using MAP method were found to be β = 0.44(4) with TC ~ 303 K and γ = 1.04(1)
with TC ~ 302 K. Kouvel-Fisher method supplies the critical values to be β = 0.41(2) with TC ~
302 K and γ = 1.09(1) with TC ~ 302 K. The obtained critical parameters show a tendency
towards the mean-field behavior, suggesting the existence of long-range ferromagnetic order in
the compound studied. The exponent δ deduced separately from isotherm analysis at T= 303 K
was found to obey to the Widom scaling relation δ = 1+ γ/ β. The reliability of obtained
exponents was confirmed by using the universal scaling hypothesis. The itinerant character of
ferromagnetism in the present system was also tested by using Rhodes-Wohlfarth’s criterion.
Research Center/Unit :
SUPRATECS - Services Universitaires pour la Recherche et les Applications Technologiques de Matériaux Électro-Céramiques, Composites, Supraconducteurs - ULiège
Fagnard, Jean-François ; Université de Liège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Capteurs et systèmes de mesures électriques
Vanderbemden, Philippe ; Université de Liège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Capteurs et systèmes de mesures électriques
Language :
English
Title :
Critical analysis of the paramagnetic to ferromagnetic phase transition in Pr0.55K0.05Sr0.4MnO3
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
E. Dagotto Nanoscale Phase Separation and Colossal Magnetoresistance: The Physics of Manganites and Related Compounds 2003 Springer Berlin
Y. Tokura Rep. Prog. Phys. 69 2006 797
C. Zener Phys. Rev. 82 1951 403
A.J. Millis, P.B. Littlewood, and B.I. Shraiman Phys. Rev. Lett. 74 1995 5144
S. Mori, C.H. Chen, and S.W. Cheong Phys. Rev. Lett. 81 1998 3972
A.J. Millis Phys. Rev. B 53 1996 8434
J. Fan, L. Ling, B. Hong, L. Zhang, L. Pi, and Y. Zhang Phys. Rev. B 81 2010 144426
J. Fan, L. Pi, L. Zhang, W. Tong, L. Ling, B. Hong, Y. Shi, W. Zhang, D. Lu, and Y. Zhang J. Appl. Phys. 98 2011 072508
S. Rößler, Harikrishnan S. Nair, U.K. Roessler, C.M.N. Kumar, S. Elizabeth, and S. Wirth Phys. Rev. B 84 2011 184422
H.E. Stanley Introduction to Phase Transitions and Critical Phenomena 1971 Oxford University Press London
Tran Dang Thanh, Dinh Chi Linh, T.V. Manh, T.A. Ho, The-Long Phan, and S.C. Yu J. Appl. Phys. 117 2015 17C101
Y. Motome, and N. Furukawa J. Phys. Soc. Jpn. 69 2000 3785
Y. Motome, and N. Furukawa J. Phys. Soc. Jpn. 70 2001 1487
M. Khlifi, A. Tozri, M. Bejar, E. Dhahri, and E.K. Hlil J. Magn. Magn. Mater. 13 2012 21426
M. Smari, I. Walha, A. Omri, J.J. Rousseau, E. Dhahri, and E.K. Hlil Ceram. Int. 40 2014 8945
R. Li, C. Zhang, L. Pi, and Y. Zhang EPL103 2014 57010
R. Thaljaoui, W. Boujelben, M. Pękała, K. Pękała, J. Antonowicz, J.-F. Fagnard, Ph. Vanderbemden, S. Dąbrowska, and J. Mucha J. Alloy. Compd. 611 2014 427
R. Thaljaoui, W. Boujelben, K.M. Pękała, M.M. Pękała, W. Cheikhrouhou-Koubaa, and A. Cheikhrouhou J. Mater. Sci. 48 2013 3894
A. Aharoni J. Appl. Phys. 83 1998 6
Ph. Vanderbemden, B. Vertruyen, A. Rulmont, R. Cloots, G. Dhalenne, and M. Ausloos Phys. Rev. B 68 2003 224418
S.K. Banerjee Phys. Lett. 12 1964 67
D. Kim, B. Revaz, B.L. Zink, F. Hellman, J.J. Rhyne, and J.F. Mitchell Phys. Rev. Lett. 89 2002 227202
M.E. Fisher Rep. Prog. Phys. 30 1967 615
B. Widom J. Chem. Phys. 43 1965 3898
B. Widom J. Chem. Phys. 41 1964 1633
J.S. Kouvel, and M.E. Fisher Phys. Rev. 136 1964 A1626
V. Franco, A. Conde, J.M. Romero-Enrique, and J.S. Blazquez J. Phys.: Condens. Matter 20 2008 285207
Renwen Li, Feng Li, Jun Fang, Wei Tong, Changjin Zhang, Li Pi, and Yuheng Zhang J. Alloy. Compd. 577 2013 303
Sobhi Hcini, Sadok Zemni, M. Baazaoui, Jamila Dhahri, Henri Vincent, and M. Oumezzine Solid State Sci. 14 2012 644
Michael E. Fisher, Shang-keng Ma, and B.G. Nickel Phys. Rev. Lett. 29 1972 917
A.K. Pramanik, and A. Banerjee Phys. Rev. B 79 2009 214426
P. Rhodes, and E.P. Wohlfarth Proc. R. Soc. Lond. A 273 1963 247
A.K. Pramanik, and A. Banerjee J. Phys.: Condens. Matter 20 2008 275207
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.