[en] Intensive development of organometal halide perovskite solar cells has lead to a dramatic surge in power conversion efficiency up to 20%. Unfortunately, the most efficient perovskite solar cells all contain lead (Pb), which is an unsettling flaw that leads to severe environmental concerns and is therefore a stumbling block envisioning their large-scale application. Aiming for the retention of favorable electro-optical properties, tin (Sn) has been considered the most likely substitute. Preliminary studies have however shown that Sn-based perovskites are highly unstable and, moreover, Sn is also enlisted as a harmful chemical, with similar concerns regarding environment and health. To bring more clarity into the appropriateness of both metals in perovskite solar cells, we provide a case study with systematic comparison regarding the environmental impact of Pb- and Sn-based perovskites, using zebrafish (Danio Rerio) as model organism. Uncovering an unexpected route of intoxication in the form of acidification, it is shown that Sn based perovskite may not be the ideal Pb surrogate.
Research Center/Unit :
GIGA - Laboratory for Organogenesis and Regeneration Hasselt University, Institute for Materials Research Hasselt University, X-LaB GIGA-I3 - Giga-Infection, Immunity and Inflammation - ULiège AFFISH-RC - Applied and Fundamental FISH Research Center - ULiège CART - Centre Interfacultaire d'Analyse des Résidus en Traces - ULiège
Ranjan, S., Balaji, S., Panella, R. A., Ydstie, B. E. Silicon solar cell production. Comput. Chem. Eng. 35, 1439-1453 (2011).
McEvoy, A., Markvart, T., Castar, L. Solar cells: Materials, Manufacture and Operation (2nd edition). Elsevier. 2013
Dou, L. et al. 25th Anniversary Article: A Decade of Organic/Polymeric Photovoltaic Research. Adv. Mater. 25. 6642-6671 (2013).
Docampo, P. et al. Lessons Learned: From Dye-Sensitized Solar Cells to All-Solid-State Hybrid Devices. Adv. Mater. 26, 4013-4030 (2014).
Chang, J. A. et al. Panchromatic Photon-Harvesting by Hole-Conducting Materials in Inorganic-Organic Heterojunction Sensitized-Solar Cell through the Formation of Nanostructured Electron Channels. Nano Lett. 12, 1863-1867 (2012).
Sargent, E. H. Colloidal quantum dot solar cells. Nat. Photonics 6, 133-135 (2012).
Kojima, A., Teshima, K., Shirai, Y., Miyasaka, T. Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. J. Am. Chem. Soc. 131, 6050-6051 (2009).
Lee, M. M. et al. Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites. Science 338, 643-647 (2012).
Conings, B. et al. Perovskite-Based Hybrid Solar Cells Exceeding 10% Efficiency with High Reproducibility Using a Thin Film Sandwich Approach. Adv. Mater. 26, 2041-2046 (2014).
Jeon, N. J. et al. Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. Nat. Mater. 13, 897-903 (2014).
Yang, W. S. et al. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 348, 1234-1237 (2015).
Green, M. A., Ho-Baillie, A., Snaith, H. J. The emergence of perovskite solar cells. Nat. Photonics 8, 506-514 (2014).
Aristidou, N. et al. The Role of Oxygen in the Degradation of Methylammonium Lead Trihalide Perovskite Photoactive Layers. Angew. Chem. Int. Ed. 54, 8208-8212 (2015).
Conings, B. et al. Intrinsic Thermal Instability of Methylammonium Lead Trihalide Perovskite. Adv. Energy Mater. 5, 1500477 (2015).
Misra, R. K. et al. Temperature-and Component-Dependent Degradation of Perovskite Photovoltaic Materials under Concentrated Sunlight. J. Phys. Chem. Lett. 6, 326-330 (2015).
Han, Y. et al. Degradation observations of encapsulated planar CH3NH3PbI3 perovskite solar cells at high temperatures and humidity. J. Mater. Chem. A 3, 8139-8147 (2015).
Hailegnaw, B. et al. Rain on Methylammonium Lead Iodide Based Perovskites: Possible Environmental Effects of Perovskite Solar Cells. J. Phys. Chem. Lett. 6, 1543-1547 (2015).
Gong, J., Darling, S. B., You, F. Perovskite photovoltaics: life-cycle assessment of energy and environmental impacts. Energy Environ. Sci. 10.1039/C1035EE00615E (2015).
Noel, N. K. et al. Lead-free organic-inorganic tin halide perovskites for photovoltaic applications. Energy Environ. Sci. 7, 3061-3068 (2014).
Espinosa, N., Serrano-Luj, L., Urbina, A., Krebs, F. C. Solution and vapour deposited lead perovskite solar cells: Ecotoxicity from a life cycle assessment perspective. Sol. Energy Mater. Sol. Cells 137, 303-310 (2015).
Lin-Fu, J. S. Vulnerability of Children to Lead Exposure and Toxicity. N. Engl. J. Med. 289, 1289-1293 (1973).
Exposure to Lead: a Major Public Health Concern. Geneva: World Health Organization; 2010.
Yang, J., Siempelkamp, B. D., Liu, D., Kelly, T. L. Investigation of CH3NH3PbI3 Degradation Rates and Mechanisms in Controlled Humidity Environments Using in Situ Techniques. ACS Nano 9, 1955-1963 (2015).
Christians, J. A., Miranda Herrera, P. A., Kamat, P. V. Transformation of the Excited State and Photovoltaic Efficiency of CH3NH3PbI3 Perovskite upon Controlled Exposure to Humidified Air. J. Am. Chem. Soc. 137, 1530-1538 (2015).
Hao, F. et al. Lead-free solid-state organic-inorganic halide perovskite solar cells. Nat. Photonics 8, 489-494 (2014).
Ogomi, Y. et al. CH3NH3SnxPb(1-x)I3 Perovskite Solar Cells Covering up to 1060 nm. J. Phys. Chem. Lett. 5, 1004-1011 (2014).
Kumar, M. H. et al. Lead-Free Halide Perovskite Solar Cells with High Photocurrents Realized Through Vacancy Modulation. Adv. Mater. 26, 7122-7127 (2014).
Feng, J., Xiao, B. Effective Masses and Electronic and Optical Properties of Nontoxic MASnX3 (X = Cl, Br, and I) Perovskite Structures as Solar Cell Absorber: A Theoretical Study Using HSE06. J. Phys. Chem. C 118, 19655-19660 (2014).
Howe, P., Watts, P. Concise International Chemical Assessment Document 65: Tin and inorganic tin compounds. World Health Organization (2005).
Blunden, S., Wallace, T. Tin in canned food: a review and understanding of occurrence and effect. Food Chem. Toxicol. 41, 1651-1662 (2003).
Hill, A. J., Teraoka, H., Heideman, W., Peterson, R. E. Zebrafish as a model vertebrate for investigating chemical toxicity. Toxicol. Sci. 86, 6-19 (2005).
Centre J. R. EURL ECVAM Recommendation on the Zebrafish Embryo Acute Toxicity Test Method (ZFET) for Acute Aquatic Toxicity Testing. Publication Office of the European Union: European Union Reference Laboratory for Alternatives to Animal Testing, 2014 July Report No.: Contract No.: EU26710. 33. Test no. 236: Fish Embryo Acute Toxicity (FET) Test. OECD Guidelines for the testing of chemicals, section 2. (2013).
Howe, K. et al. The zebrafish reference genome sequence and its relationship to the human genome. Nature 496, 498-503 (2013).
Imler, G. H. et al. Solid state transformation of the crystalline monohydrate (CH3NH3)PbI3(H2O) to the (CH3NH3)PbI3 perovskite. Chem. Commun. 51, 11290-11292 (2015).
Niu, G. et al. Study on the stability of CH3NH3PbI3 films and the effect of post-modification by aluminum oxide in all-solid-state hybrid solar cells. J. Mater. Chem. A 2, 705-710 (2014).
Yoder, C. S. et al. The Synthesis, Characterization, and Lewis Acidity of SnI2 and SnI4. J. Chem. Educ. 74, 575 (1997).
Kimmel, C. B. et al. Stages of embryonic development of the zebrafish. Dev. Dyn. 203, 253-310 (1995).
Jezierska, B., Lugowska, K., Witeska, M. The effects of heavy metals on embryonic development of fish (a review). Fish Physiol. Biochem. 35, 625-640 (2009).
Komjarova, I., Blust, R. Effects of Na, Ca, and pH on the simultaneous uptake of Cd, Cu, Ni, Pb, and Zn in the zebrafish Danio rerio: a stable isotope experiment. Environ. Sci. Technol. 43, 7958-7963 (2009).
Dave, G. The influence of pH on the toxicity of aluminum, cadmium, and iron to eggs and larvae of the zebrafish, Brachydanio rerio. Ecotoxicol. Environ. Saf. 10, 253-267 (1985).
Jeanray, N. et al. Phenotype Classification of Zebrafish Embryos by Supervised Learning. PloS one 10, e0116989 (2015).
Roy, N. M., DeWolf, S., Carneiro, B. Evaluation of the developmental toxicity of lead in the Danio rerio body. Aquat. Toxicol. 158, 138-148 (2015).
Dave, G., Xiu, R. Q. Toxicity of mercury, copper, nickel, lead, and cobalt to embryos and larvae of zebrafish, Brachydanio rerio. Arch. Environ. Contam. Toxicol. 21, 126-134 (1991).
Sisman, T. Early life stage and genetic toxicity of stannous chloride on zebrafish embryos and adults: toxic effects of tin on zebrafish. Environ. Toxicol. 26, 240-249 (2011).
Zhu, G. et al. The effects of synthesis parameters on the formation of PbI2 particles under DTAB-assisted hydrothermal process. Mater. Chem. Phys. 131, 64-71 (2011).
Zhu, G. et al. Controllable synthesis of PbI2 nanocrystals via a surfactant-assisted hydrothermal route. Appl. Phys. A 98, 299-304 (2010).
Dennis, J., Henisch, H. K., Cherin, P. Preparation and Properties of Lead HydroxyIodide in Single Crystal Form. J. Electrochem. Soc. 112, 1240-1241 (1965).
Todd, G., Parry, E. Character of Lead Hydroxide and Basic Lead Carbonate. Nature 202, 386-387 (1964).
Choi, W.-S. The Fabrication of Tin Oxide Films by Atomic Layer Deposition using Tetrakis(Ethylmethylamino) Tin Precursor. Trans. Electr. Electron. Mater. 10, 200-202 (2009).
Johansson, N., Kihistrom, J., Wahlberg, A. Low pH values shown to affect developing fish eggs (Brachydanio rerio Ham-Buch). Ambio 2, 42-43 (1973).
Gosner, K. L., Black, I. H. The effects of acidity on the development and hatching of New Jersey frogs. Ecology 38, 252-262 (1957).
Peterson, R., Daye, P., Metcalfe, J. Inhibition of Atlantic salmon (Salmo solar) hatching at low pH. Can. J. Fish. Aquat. Sci. 37, 770-774 (1980).
Haya, K., Waiwood, B. Acid pH and chorionase activity of Atlantic salmon (Salmo salar) eggs. B. Environ. Contam. Tox. 27, 7-12 (1981).
Mount, D. I. Chronic effect of low pH on fathead minnow survival, growth and reproduction. Water Res. 7, 987-993 (1973).
Nchedo, A., Chijioke, O. Effect of pH on Hatching Success and Larval Survival of African Catfish (Clarias gariepinus). Nature & Science 10, 47 (2012).
Johansson, N., Kihistrom, J. Pikes (Esox lucius L.) shown to be affected by low pH values during first weeks after hatching. Environ. Res. 9, 12-17 (1975).
Zhang, X., Gong, Z. Fluorescent transgenic zebrafish Tg(nkx2.2a:mEGFP) provides a highly sensitive monitoring tool for neurotoxins. PloS one 8, e55474 (2013).
Lawson, N. D., Weinstein, B. M. In vivo imaging of embryonic vascular development using transgenic zebrafish. Dev. Biol. 248, 307-318 (2002).
Blechinger, S. R. et al. The heat-inducible zebrafish hsp70 gene is expressed during normal lens development under non-stress conditions. Mech. Dev. 112, 213-215 (2002).
Hallare, A., Nagel, K., Kohler, H. R., Triebskorn, R. Comparative embryotoxicity and proteotoxicity of three carrier solvents to zebrafish (Danio rerio) embryos. Ecotoxicol. Environ. Saf. 63, 378-388 (2006).
Wertheim, G. K., Dicenzo, S. B. Least-squares analysis of photoemission data. J. Electron. Spectrosc. Relat. Phenom. 37, 57-67 (1985).