Carnosol Inhibits Pro-Inflammatory and Catabolic Mediators of Cartilage Breakdown in Human Osteoarthritic Chondrocytes and Mediates Cross-Talk between Subchondral Bone Osteoblasts and Chondrocytes.
[en] AIM: The aim of this work was to evaluate the effects of carnosol, a rosemary polyphenol, on pro-inflammatory and catabolic mediators of cartilage breakdown in chondrocytes and via bone-cartilage crosstalk. MATERIALS AND METHODS: Osteoarthritic (OA) human chondrocytes were cultured in alginate beads for 4 days in presence or absence of carnosol (6 nM to 9 muM). The production of aggrecan, matrix metalloproteinase (MMP)-3, tissue inhibitor of metalloproteinase (TIMP)-1, interleukin (IL)-6 and nitric oxide (NO) and the expression of type II collagen and ADAMTS-4 and -5 were analyzed. Human osteoblasts from sclerotic (SC) or non-sclerotic (NSC) subchondral bone were cultured for 3 days in presence or absence of carnosol before co-culture with chondrocytes. Chondrocyte gene expression was analyzed after 4 days of co-culture. RESULTS: In chondrocytes, type II collagen expression was significantly enhanced in the presence of 3 muM carnosol (p = 0.008). MMP-3, IL-6, NO production and ADAMTS-4 expression were down-regulated in a concentration-dependent manner by carnosol (p<0.01). TIMP-1 production was slightly increased at 3 muM (p = 0.02) and ADAMTS-5 expression was decreased from 0.2 to 9 muM carnosol (p<0.05). IL-6 and PGE2 production was reduced in the presence of carnosol in both SC and NSC osteoblasts while alkaline phosphatase activity was not changed. In co-culture experiments preincubation of NSC and SC osteoblasts wih carnosol resulted in similar effects to incubation with anti-IL-6 antibody, namely a significant increase in aggrecan and decrease in MMP-3, ADAMTS-4 and -5 gene expression by chondrocytes. CONCLUSIONS: Carnosol showed potent inhibition of pro-inflammatory and catabolic mediators of cartilage breakdown in chondrocytes. Inhibition of matrix degradation and enhancement of formation was observed in chondrocytes cocultured with subchondral osteoblasts preincubated with carnosol indicating a cross-talk between these two cellular compartments, potentially mediated via inhibition of IL-6 in osteoblasts as similar results were obtained with anti-IL-6 antibody.
Disciplines :
Rheumatology
Author, co-author :
Sanchez, Christelle ; Université de Liège > Département des sciences de la motricité > Unité de recherche sur l'os et le cartilage (U.R.O.C.)
Horcajada, Marie-Noelle
Membrez Scalfo, Fanny
Ameye, Laurent
Offord, Elizabeth
Henrotin, Yves ; Université de Liège > Département des sciences de la motricité > Unité de recherche sur l'os et le cartilage (U.R.O.C.)
Language :
English
Title :
Carnosol Inhibits Pro-Inflammatory and Catabolic Mediators of Cartilage Breakdown in Human Osteoarthritic Chondrocytes and Mediates Cross-Talk between Subchondral Bone Osteoblasts and Chondrocytes.
Publication date :
2015
Journal title :
PLoS ONE
eISSN :
1932-6203
Publisher :
Public Library of Science, United States - California
Loeser RF, Goldring SR, Scanzello CR, Goldring MB. Osteoarthritis: a disease of the joint as an organ. Arthritis Rheum. 2012; 64(6):1697-707. doi:10.1002/art.34453 PMID: 22392533; PubMed Central PMCID: PMC3366018.
Liu-Bryan R, Terkeltaub R. Emerging regulators of the inflammatory process in osteoarthritis. Nat Rev Rheumatol. 2015; 11(1):35-44. doi:10.1038/nrrheum.2014.162 PMID: 25266449.
Martel-Pelletier J, Di Battista J, Lajeunesse D. Biochemical factors in joint articular tissue degradation in osteoarthritis. In: Reginster JY, Pelletier JP, Martel-Pelletier J, Henrotin Y, editors. Osteoarthritis, clinical and experimental aspects. Berlin: Springer; 1999. p. 156-87.
Pesesse L, Sanchez C, Henrotin Y. Osteochondral plate angiogenesis: A new treatment target in osteoarthritis. Joint Bone Spine. 2011; 78(2):144-9. Epub 2010/09/21. doi:S1297-319X(10)00192-2 [pii] doi: 10.1016/j.jbspin.2010.07.001 PMID: 20851653.
Sanchez C, Deberg MA, Bellahcene A, Castronovo V, Msika P, Delcour JP, et al. Phenotypic characterization of osteoblasts from the sclerotic zones of osteoarthritic subchondral bone. Arthritis Rheum. 2008; 58(2):442-55. Epub 2008/02/02. doi:10.1002/art.23159 PMID: 18240211.
Sanchez C, Deberg MA, Piccardi N, Msika P, Reginster JY, Henrotin YE. Osteoblasts from the sclerotic subchondral bone downregulate aggrecan but upregulate metalloproteinases expression by chondrocytes. This effect is mimicked by interleukin-6, -1beta and oncostatin M pre-treated non-sclerotic osteoblasts. Osteoarthritis Cartilage. 2005; 13(11):979-87. Epub 2005/10/26. doi:S1063-4584(05)00094-4 [pii] doi: 10.1016/j.joca.2005.03.008 PMID: 16243232.
Sanchez C, Deberg MA, Piccardi N, Msika P, Reginster JY, Henrotin YE. Subchondral bone osteoblasts induce phenotypic changes in human osteoarthritic chondrocytes. Osteoarthritis Cartilage. 2005; 13(11):988-97. Epub 2005/09/20. doi:S1063-4584(05)00196-2 [pii] doi: 10.1016/j.joca.2005.07.012 PMID: 16168681.
Offord EA. In: Packer L, Ong CN, Halliwell BB, Wachtel-Galor S, Benzie IFF, editors. Herbal Medecine and molecular basis of health and disease management: Marcel Dekker 2004. p. 457.
Huang SC, Ho CT, Lin-Shiau SY, Lin JK. Carnosol inhibits the invasion of B16/F10 mouse melanoma cells by suppressing metalloproteinase-9 through down-regulating nuclear factor-kappa B and c-Jun. Biochem Pharmacol. 2005; 69(2):221-32. Epub 2005/01/04. doi:S0006-2952(04)00651-3 [pii] doi: 10.1016/j.bcp.2004.09.019 PMID: 15627474.
Johnson JJ. Carnosol: A promising anti-cancer and anti-inflammatory agent. Cancer Lett. 2011. Epub 2011/03/09. doi:S0304-3835(11)00067-X [pii] doi: 10.1016/j.canlet.2011.02.005 PMID: 21382660.
Lopez-Jimenez A, Garcia-Caballero M, Medina MA, Quesada AR. Anti-angiogenic properties of carnosol and carnosic acid, two major dietary compounds from rosemary. European journal of nutrition. 2013; 52(1):85-95. doi:10.1007/s00394-011-0289-x PMID: 22173778.
Takaki I, Bersani-Amado LE, Vendruscolo A, Sartoretto SM, Diniz SP, Bersani-Amado CA, et al. Antiinflammatory and antinociceptive effects of Rosmarinus officinalis L. essential oil in experimental animal models. J Med Food. 2008; 11(4):741-6. Epub 2008/12/05. doi:10.1089/jmf.2007.0524 PMID: 19053868.
Lo AH, Liang YC, Lin-Shiau SY, Ho CT, Lin JK. Carnosol, an antioxidant in rosemary, suppresses inducible nitric oxide synthase through down-regulating nuclear factor-kappaB in mouse macrophages. Carcinogenesis. 2002; 23(6):983-91. Epub 2002/06/26. PMID: 12082020.
Subbaramaiah K, Cole PA, Dannenberg AJ. Retinoids and carnosol suppress cyclooxygenase-2 transcription by CREB-binding protein/p300-dependent and-independent mechanisms. Cancer Res. 2002; 62(9):2522-30. Epub 2002/05/01. PMID: 11980644.
Martin D, Rojo AI, Salinas M, Diaz R, Gallardo G, Alam J, et al. Regulation of heme oxygenase-1 expression through the phosphatidylinositol 3-kinase/Akt pathway and the Nrf2 transcription factor in response to the antioxidant phytochemical carnosol. J Biol Chem. 2004; 279(10):8919-29. doi:10.1074/jbc.M309660200 PMID: 14688281.
Sanchez C, Mathy-Hartert M, Deberg MA, Ficheux H, Reginster JY, Henrotin YE. Effects of rhein on human articular chondrocytes in alginate beads. Biochem Pharmacol. 2003; 65(3):377-88. PMID: 12527330.
Sanchez C, Deberg MA, Piccardi N, Msika P, Reginster JY, Henrotin Y. Osteoblasts from the sclerotic subchondral bone downregulate aggrecan but upregulate metalloproteinases expression by chondrocytes. This effect is mimicked by Interleukin-6, -1b and Oncostatin M pre-treated non sclerotic osteoblasts. Osteoarthritis Cartilage. 2005; 13(11):979-87. PMID: 16243232.
Labarca C, Paigen K. A simple, rapid, and sensitive DNA assay procedure. Anal Biochem. 1980; 102 (2):344-52. PMID: 6158890.
Serteyn D, Deby-Dupont G, Pincemail J, Mottart E, Philippart C, Lamy M. Equine postanaesthetic myositis: thromboxanes, prostacyclin and prostaglandin E2 production. Vet Res Commun. 1988; 12(2-3):219-26. PMID: 3188388.
Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR. Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal Biochem. 1982; 126(1):131-8. PMID: 7181105.
Romo Vaquero M, Garcia Villalba R, Larrosa M, Yanez-Gascon MJ, Fromentin E, Flanagan J, et al. Bioavailability of the major bioactive diterpenoids in a rosemary extract: metabolic profile in the intestine, liver, plasma, and brain of Zucker rats. Mol Nutr Food Res. 2013; 57(10):1834-46. doi:10.1002/mnfr.201300052 PMID: 23625681.
Sanchez C, Deberg MA, Piccardi N, Msika P, Reginster JY, Henrotin Y. Subchondral bone osteoblasts induce phenotypic changes in human osteoarthritic chondrocytes. Osteoarthritis Cartilage. 2005; 13 (11):988-97. PMID: 16168681.
Jiang J, Nicoll SB, Lu HH. Co-culture of osteoblasts and chondrocytes modulates cellular differentiation in vitro. Biochem Biophys Res Commun. 2005; 338(2):762-70. PMID: 16259947.
Prasadam I, Crawford R, Xiao Y. Aggravation of ADAMTS and matrix metalloproteinase production and role of ERK1/2 pathway in the interaction of osteoarthritic subchondral bone osteoblasts and articular cartilage chondrocytes - possible pathogenic role in osteoarthritis. J Rheumatol. 2012; 39(3):621-34. doi:10.3899/jrheum.110777 PMID: 22247346.
Hilal G, Martel-Pelletier J, Pelletier JP, Ranger P, Lajeunesse D. Osteoblast-like cells from human subchondral osteoarthritic bone demonstrate an altered phenotype in vitro: possible role in subchondral bone sclerosis. Arthritis Rheum. 1998; 41(5):891-9. PMID: 9588742.
Massicotte F, Lajeunesse D, Benderdour M, Pelletier JP, Hilal G, Duval N, et al. Can altered production of interleukin-1beta, interleukin-6, transforming growth factor-beta and prostaglandin E(2) by isolated human subchondral osteoblasts identify two subgroups of osteoarthritic patients. Osteoarthritis Cartilage. 2002; 10(6):491-500. PMID: 12056853.
Guevremont M, Martel-Pelletier J, Massicotte F, Tardif G, Pelletier JP, Ranger P, et al. Human adult chondrocytes express hepatocyte growth factor (HGF) isoforms but not HgF: potential implication of osteoblasts on the presence of HGF in cartilage. J Bone Miner Res. 2003; 18(6):1073-81. PMID: 12817761.
Sanchez C, Deberg MA, Burton S, Devel P, Reginster JY, Henrotin YE. Differential regulation of chondrocyte metabolism by oncostatin M and interleukin-6. Osteoarthritis Cartilage. 2004; 12(10):801-10. Epub 2004/09/29. doi:10.1016/j.joca.2004.06.011 S1063-4584(04)00119-0 [pii]. PMID: 15450530.
Legendre F, Dudhia J, Pujol JP, Bogdanowicz P. JAK/STAT but not ERK1/ERK2 pathway mediates interleukin (IL)-6/soluble IL-6R down-regulation of Type II collagen, aggrecan core, and link protein transcription in articular chondrocytes. Association with a down-regulation of SOX9 expression. J Biol Chem. 2003; 278(5):2903-12. PMID: 12419823.
Nietfeld JJ, Wilbrink B, Helle M, van Roy JL, den Otter W, Swaak AJ, et al. Interleukin-1-induced interleukin- 6 is required for the inhibition of proteoglycan synthesis by interleukin-1 in human articular cartilage. Arthritis Rheum. 1990; 33(11):1695-701. PMID: 2242066.