[en] We investigate multiqubit permutation-symmetric states with maximal entropy of entanglement. Such states can be viewed as particular spin states, namely anticoherent spin states. Using the Majorana representation of spin states in terms of points on the unit sphere, we analyze the consequences of a point-group symmetry in their arrangement on the quantum properties of the corresponding state. We focus on the identification of anticoherent states (for which all reduced density matrices in the symmetric subspace are maximally mixed) associated with point-group-symmetric sets of points. We provide three different characterizations of anticoherence and establish a link between point symmetries, anticoherence, and classes of states equivalent through stochastic local operations with classical communication. We then investigate in detail the case of small numbers of qubits and construct infinite families of anticoherent states with point-group symmetry of their Majorana points, showing that anticoherent states do exist to arbitrary order.
Disciplines :
Physics
Author, co-author :
Baguette, Dorian ; Université de Liège > Département de physique > Optique quantique
Damanet, François ; Université de Liège > Département de physique > Optique quantique
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
I. Bengtsson and K. Zyczkowski, Geometry of Quantum States: An Introduction to Quantum Entanglement, 2nd ed. (Cambridge University Press, Cambridge, UK, 2008).
E. Majorana, Nuovo Cimento 9, 43 (1932). NUCIAD 0029-6341 10.1007/BF02960953
H. Mäkelä and A. Messina, Phys. Scr. T140, 014054 (2010). PHSTBO 0031-8949 10.1088/0031-8949/2010/T140/014054
S. K. Goyal, B. N. Simon, R. Singh, and S. Simon, arXiv:1111.4427.
A. Mandilara, T. Coudreau, A. Keller, and P. Milman, Phys. Rev. A 90, 050302 (2014). PLRAAN 1050-2947 10.1103/PhysRevA.90.050302
O. Giraud, D. Braun, D. Baguette, T. Bastin, and J. Martin, Phys. Rev. Lett. 114, 080401 (2015). PRLTAO 0031-9007 10.1103/PhysRevLett.114.080401
R. Barnett, A. Turner, and E. Demler, Phys. Rev. Lett. 97, 180412 (2006). PRLTAO 0031-9007 10.1103/PhysRevLett.97.180412
D. M. Stamper-Kurn and M. Ueda, Rev. Mod. Phys. 85, 1191 (2013). RMPHAT 0034-6861 10.1103/RevModPhys.85.1191
H. Mäkelä and K.-A. Suominen, Phys. Rev. Lett. 99, 190408 (2007). PRLTAO 0031-9007 10.1103/PhysRevLett.99.190408
J. Martin, O. Giraud, P. A. Braun, D. Braun, and T. Bastin, Phys. Rev. A 81, 062347 (2010). PLRAAN 1050-2947 10.1103/PhysRevA.81.062347
M. Aulbach, D. Markham, and M. Murao, New J. Phys. 12, 073025 (2010). NJOPFM 1367-2630 10.1088/1367-2630/12/7/073025
D. J. H. Markham, Phys. Rev. A 83, 042332 (2011). PLRAAN 1050-2947 10.1103/PhysRevA.83.042332
P. Ribeiro and R. Mosseri, Phys. Rev. Lett. 106, 180502 (2011). PRLTAO 0031-9007 10.1103/PhysRevLett.106.180502
M. Fizia and K. Sacha, J. Phys. A 45, 045103 (2012). 1751-8113 10.1088/1751-8113/45/4/045103
J. H. Hannay, J. Phys. A 31, L53 (1998) JPHAC5 0305-4470; 10.1088/0305-4470/31/2/002
P. Bruno, Phys. Rev. Lett. 108, 240402 (2012) PRLTAO 0031-9007; 10.1103/PhysRevLett.108.240402
H. D. Liu and L. B. Fu, Phys. Rev. Lett. 113, 240403 (2014) PRLTAO 0031-9007; 10.1103/PhysRevLett.113.240403
C. Yang, H. Guo, L.-B. Fu, and S. Chen, Phys. Rev. B 91, 125132 (2015). PRBMDO 1098-0121 10.1103/PhysRevB.91.125132
J. Zimba, Electron. J. Theor. Phys. 3, 143 (2006).
D. Baguette, T. Bastin, and J. Martin, Phys. Rev. A 90, 032314 (2014). PLRAAN 1050-2947 10.1103/PhysRevA.90.032314
P. Facchi, Rend. Lincei Mat. Appl. 20, 25 (2009);
W. Helwig, W. Cui, J. I. Latorre, A. Riera, and H.-K. Lo, Phys. Rev. A 86, 052335 (2012) PLRAAN 1050-2947; 10.1103/PhysRevA.86.052335
D. Goyeneche, D. Alsina, J. I. Latorre, A. Riera and K. Zyczkowski, Phys. Rev. A 92, 032316 (2015). PLRAAN 1050-2947 10.1103/PhysRevA.92.032316
N. Gisin and H. Bechmann-Pasquinucci, Phys. Lett. A 246, 1 (1998). PYLAAG 0375-9601 10.1016/S0375-9601(98)00516-7
A. J. Scott, Phys. Rev. A 69, 052330 (2004). PLRAAN 1050-2947 10.1103/PhysRevA.69.052330
G. Gour and N. Wallach, N. J. Phys. 13, 073013 (2011). NJOPFM 1367-2630 10.1088/1367-2630/13/7/073013
I. D. K. Brown, S. Stepney, A. Sudbery, and S. L. Braunstein, J. Phys. A 38, 1119 (2005). JPHAC5 0305-4470 10.1088/0305-4470/38/5/013
L. Arnaud and N. J. Cerf, Phys. Rev. A 87, 012319 (2013). PLRAAN 1050-2947 10.1103/PhysRevA.87.012319
D. Goyeneche and K. Zyczkowski, Phys. Rev. A 90, 022316 (2014). PLRAAN 1050-2947 10.1103/PhysRevA.90.022316
T. Maciazek and A. Sawicki, J. Phys. A 48, 045305 (2015). 1751-8113 10.1088/1751-8113/48/4/045305
A. Sawicki, M. Oszmaniec, and M. Kus̈, Rev. Math. Phys. 26, 1450004 (2014). RMPHEX 0129-055X 10.1142/S0129055X14500044
O. Giraud, P. Braun, and D. Braun, Phys. Rev. A 78, 042112 (2008). PLRAAN 1050-2947 10.1103/PhysRevA.78.042112
A. Luis and A. Rivas, Phys. Rev. A 84, 042111 (2011). PLRAAN 1050-2947 10.1103/PhysRevA.84.042111
A. R. Usha Devi, A. K. Rajagopal, Sudha, H. S. Karthik, and J. Prabhu Tej, Quantum Inf. Process. 12, 3717 (2013). 1570-0755 10.1007/s11128-013-0627-4
J. Crann, R. Pereira, and D. W. Kribs, J. Phys. A 43, 255307 (2010). 1751-8113 10.1088/1751-8113/43/25/255307
G. S. Agarwal, Phys. Rev. A 24, 2889 (1981). 0556-2791 10.1103/PhysRevA.24.2889
E. Bannai and M. Tagami, J. Phys. A 44, 342002 (2011). 1751-8113 10.1088/1751-8113/44/34/342002
W. Ganczarek, M. Kus̈, and K. Zyczkowski, Phys. Rev. A 85, 032314 (2012). PLRAAN 1050-2947 10.1103/PhysRevA.85.032314
F. A. Cotton, Chemical Applications of Group Theory, 3rd ed. (Wiley, New York, 1990).
W. Dür, G. Vidal, and J. I. Cirac, Phys. Rev. A 62, 062314 (2000). PLRAAN 1050-2947 10.1103/PhysRevA.62.062314
P. Mathonet, S. Krins, M. Godefroid, L. Lamata, E. Solano, and T. Bastin, Phys. Rev. A 81, 052315 (2010). 10.1103/PhysRevA.81.052315
F. Verstraete, J. Dehaene, and B. De Moor, Phys. Rev. A 68, 012103 (2003). PLRAAN 1050-2947 10.1103/PhysRevA.68.012103
T. Bastin, S. Krins, P. Mathonet, M. Godefroid, L. Lamata, and E. Solano, Phys. Rev. Lett. 103, 070503 (2009). 10.1103/PhysRevLett.103.070503
Two arbitrary nonzero Dicke coefficients of a state can always be chosen to be real and positive by applying a diagonal local unitary (Equation presented) with (Equation presented) to remove the relative phase between these two coefficients and subsequently removing a global phase from the state.
O. Giraud, P. Braun, and D. Braun, New J. Phys. 12, 063005 (2010). NJOPFM 1367-2630 10.1088/1367-2630/12/6/063005
F. B. Hildebrand, Introduction to Numerical Analysis, 2nd ed. (Dover, New York, 1987).
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.