[en] The Mars Atmosphere and Volatile Evolution (MAVEN) mission, during the second of its Deep Dip campaigns, made comprehensive measurements of martian thermosphere and ionosphere composition, structure, and variability at altitudes down to ~130 kilometers in the subsolar region. This altitude range contains the diffusively separated upper atmosphere just above the well-mixed atmosphere, the layer of peak extreme ultraviolet heating and primary reservoir for atmospheric escape. In situ measurements of the upper atmosphere reveal previously unmeasured populations of neutral and charged particles, the homopause altitude at approximately 130 kilometers, and an unexpected level of variability both on an orbit-To-orbit basis and within individual orbits. These observations help constrain volatile escape processes controlled by thermosphere and ionosphere structure and variability.
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Bougher, Stephen W.; CLaSP Department, University of Michigan, Ann Arbor, MI, United States
Jakosky, Bruce M.; Laboratory for Atmospheric and Space Physics, University. of Colorado, Boulder, CO, United States
Halekas, J.; Department of Physics and Astronomy, University of Iowa, Iowa City, IA, United States
Grebowsky, Joseph M.; NASA/Goddard Space Flight Center, Greenbelt, MD, United States
Luhmann, Janet G.; Space Sciences Laboratory, University of California at Berkeley, Berkeley, CA, United States
Mahaffy, P.; NASA/Goddard Space Flight Center, Greenbelt, MD, United States
Connerney, J.; NASA/Goddard Space Flight Center, Greenbelt, MD, United States
Eparvier, F.; Laboratory for Atmospheric and Space Physics, University. of Colorado, Boulder, CO, United States
Ergun, R.; Laboratory for Atmospheric and Space Physics, University. of Colorado, Boulder, CO, United States
Larson, D.; Space Sciences Laboratory, University of California at Berkeley, Berkeley, CA, United States
McFadden, J.; Space Sciences Laboratory, University of California at Berkeley, Berkeley, CA, United States
Mitchell, D.; Space Sciences Laboratory, University of California at Berkeley, Berkeley, CA, United States
Schneider, N.; Laboratory for Atmospheric and Space Physics, University. of Colorado, Boulder, CO, United States
Zurek, R.; Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
Mazelle, C.; CNRS/Institut de Recherche en Astrophysique et Planétologie, Toulouse, France, University Paul Sabatier, Toulouse, France
Andersson, L.; Laboratory for Atmospheric and Space Physics, University. of Colorado, Boulder, CO, United States
Andrews, D.; Swedish Institute of Space Physics, Kiruna, Sweden
Baird, D.; NASA/Johnson Space Center, Houston, TX, United States
N. Baker, D.; Laboratory for Atmospheric and Space Physics, University. of Colorado, Boulder, CO, United States
M. Bell, J.; National Institute of Aerospace, Hampton, VA, United States
Benna, M.; NASA/Goddard Space Flight Center, Greenbelt, MD, United States
Brain, D.; Laboratory for Atmospheric and Space Physics, University. of Colorado, Boulder, CO, United States
Chaffin, M.; Laboratory for Atmospheric and Space Physics, University. of Colorado, Boulder, CO, United States
Chamberlin, P.; NASA/Goddard Space Flight Center, Greenbelt, MD, United States
Chaufray, Y.; Laboratoire Atmosphères, Milieux, Observations Spatiales /CNRS, Verrieres-le-Buisson, France
Clarke, J.; Department of Astronomy, Boston University, Boston, MA, United States
Collinson, G.; NASA/Goddard Space Flight Center, Greenbelt, MD, United States
Combi, M.; CLaSP Department, University of Michigan, Ann Arbor, MI, United States
Crary, F.; Laboratory for Atmospheric and Space Physics, University. of Colorado, Boulder, CO, United States
Cravens, T.; Department of Physics and Astronomy, University of Kansas, Lawrence, KS, United States
Crismani, M.; Laboratory for Atmospheric and Space Physics, University. of Colorado, Boulder, CO, United States
Curry, S.; Space Sciences Laboratory, University of California at Berkeley, Berkeley, CA, United States
Curtis, D.; Space Sciences Laboratory, University of California at Berkeley, Berkeley, CA, United States
Deighan, J.; Laboratory for Atmospheric and Space Physics, University. of Colorado, Boulder, CO, United States
Delory, G.; Space Sciences Laboratory, University of California at Berkeley, Berkeley, CA, United States
Dewey, R.; Laboratory for Atmospheric and Space Physics, University. of Colorado, Boulder, CO, United States
DiBraccio, G.; NASA/Goddard Space Flight Center, Greenbelt, MD, United States
Dong, C.; CLaSP Department, University of Michigan, Ann Arbor, MI, United States
Dong, Y.; Laboratory for Atmospheric and Space Physics, University. of Colorado, Boulder, CO, United States
Dunn, P.; Space Sciences Laboratory, University of California at Berkeley, Berkeley, CA, United States
Elrod, M.; NASA/Goddard Space Flight Center, Greenbelt, MD, United States
England, S.; Space Sciences Laboratory, University of California at Berkeley, Berkeley, CA, United States
Eriksson, A.; Swedish Institute of Space Physics, Kiruna, Sweden
Espley, J.; NASA/Goddard Space Flight Center, Greenbelt, MD, United States
Evans, S.; Computational Physics, Springfield, VA, United States
Fang, X.; Laboratory for Atmospheric and Space Physics, University. of Colorado, Boulder, CO, United States
Fillingim, M.; Space Sciences Laboratory, University of California at Berkeley, Berkeley, CA, United States
Fortier, K.; Laboratory for Atmospheric and Space Physics, University. of Colorado, Boulder, CO, United States
Fowler, C. M.; Laboratory for Atmospheric and Space Physics, University. of Colorado, Boulder, CO, United States
Fox, J.; Department of Physics, Wright State University, Fairborn, OH, United States
Gröller, H.; Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ, United States
Guzewich, S.; NASA/Goddard Space Flight Center, Greenbelt, MD, United States
Hara, T.; Space Sciences Laboratory, University of California at Berkeley, Berkeley, CA, United States
Harada, Y.; Space Sciences Laboratory, University of California at Berkeley, Berkeley, CA, United States
Holsclaw, G.; Laboratory for Atmospheric and Space Physics, University. of Colorado, Boulder, CO, United States
K. Jain, S.; Laboratory for Atmospheric and Space Physics, University. of Colorado, Boulder, CO, United States
Jolitz, R.; Space Sciences Laboratory, University of California at Berkeley, Berkeley, CA, United States
LeBlanc, F.; Laboratoire Atmosphères, Milieux, Observations Spatiales /CNRS, Verrieres-le-Buisson, France
Lee, C. O.; Space Sciences Laboratory, University of California at Berkeley, Berkeley, CA, United States
Lee, Y.; CLaSP Department, University of Michigan, Ann Arbor, MI, United States
Lefevre, F.; Laboratoire Atmosphères, Milieux, Observations Spatiales /CNRS, Verrieres-le-Buisson, France
Lillis, R.; Space Sciences Laboratory, University of California at Berkeley, Berkeley, CA, United States
Livi, R.; Space Sciences Laboratory, University of California at Berkeley, Berkeley, CA, United States
Lo, D.; Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ, United States
Ma, Y.; Institute of Geophysics and Planetary Physics, University of California, Los Angeles, Los Angeles, CA, United States
Mayyasi, M.; Department of Astronomy, Boston University, Boston, MA, United States
McClintock, W.; Laboratory for Atmospheric and Space Physics, University. of Colorado, Boulder, CO, United States
McEnulty, T.; Laboratory for Atmospheric and Space Physics, University. of Colorado, Boulder, CO, United States
Modolo, R.; Laboratoire Atmosphères, Milieux, Observations Spatiales /CNRS, Verrieres-le-Buisson, France
Montmessin, F.; Laboratoire Atmosphères, Milieux, Observations Spatiales /CNRS, Verrieres-le-Buisson, France
Morooka, M.; Laboratory for Atmospheric and Space Physics, University. of Colorado, Boulder, CO, United States
Nagy, A.; CLaSP Department, University of Michigan, Ann Arbor, MI, United States
Olsen, K.; CLaSP Department, University of Michigan, Ann Arbor, MI, United States
Peterson, W.; Laboratory for Atmospheric and Space Physics, University. of Colorado, Boulder, CO, United States
Rahmati, A.; Department of Physics and Astronomy, University of Kansas, Lawrence, KS, United States
Ruhunusiri, S.; Department of Physics and Astronomy, University of Iowa, Iowa City, IA, United States
Russell, T. C.; Institute of Geophysics and Planetary Physics, University of California, Los Angeles, Los Angeles, CA, United States
Sakai, S.; Department of Physics and Astronomy, University of Kansas, Lawrence, KS, United States
Sauvaud, J.-A.; CNRS/Institut de Recherche en Astrophysique et Planétologie, Toulouse, France, University Paul Sabatier, Toulouse, France
Seki, K.; Solar-Terrestrial Environment Laboratory, Nagoya University, Nagoya, Aichi, Japan
Steckiewicz, M.; CNRS/Institut de Recherche en Astrophysique et Planétologie, Toulouse, France, University Paul Sabatier, Toulouse, France
Stevens, M.; Naval Research Laboratory, Washington, DC, United States
Stewart, A. I. F.; Laboratory for Atmospheric and Space Physics, University. of Colorado, Boulder, CO, United States
Stiepen, Arnaud ; University of Colorado at Boulder - CU > Laboratory for Atmospheric and Space Physics
Stone, S.; Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ, United States
Tenishev, V.; CLaSP Department, University of Michigan, Ann Arbor, MI, United States
Thiemann, E.; Laboratory for Atmospheric and Space Physics, University. of Colorado, Boulder, CO, United States
Tolson, R.; National Institute of Aerospace, Hampton, VA, United States
Toublanc, D.; CNRS/Institut de Recherche en Astrophysique et Planétologie, Toulouse, France, University Paul Sabatier, Toulouse, France
Vogt, M.; Department of Astronomy, Boston University, Boston, MA, United States
Weber, T.; Laboratory for Atmospheric and Space Physics, University. of Colorado, Boulder, CO, United States
Withers, P.; Department of Astronomy, Boston University, Boston, MA, United States
Woods, T.; Laboratory for Atmospheric and Space Physics, University. of Colorado, Boulder, CO, United States
Yelle, R.; Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ, United States
S. W. Bougher, T. E. Cravens, J. Grebowsky, J. Luhmann, The aeronomy of Mars: Characterization by MAVEN of the upper atmosphere reservoir that regulates volatile escape. Space Sci. Rev. (2014). doi: 10.1007/s11214-014-0053-7
B. M. Jakosky et al., The Mars Atmosphere and Volatile Evolution (MAVEN) Mission to Mars. Space Sci. Rev. (2015). doi: 10.1007/s11214-015-0139-x
The homopause altitude of a given planetary upper atmosphere is commonly estimated as the altitude at which a given species diffusion coefficient matches the specified eddy diffusion coefficient. This altitude represents that level in the atmosphere below which this species is well mixed (homosphere) and above which molecular diffusion serves to separate species according to their individual scale heights (heterosphere). Each species has its particular homopause altitude, owing to the slight variation of molecular diffusion coefficients by species. In reality, the homopause is not a single altitude level, but a transition region across which these molecular and eddy diffusion processes gradually exchange their dominant roles. For Mars, a common mixed-Atmosphere scale height is revealed by CO2, Ar, and N2 below their homopauses. However, photochemically active species (such as O) do not conform to this mixed-Atmosphere scale height.
The MAVEN in situ instruments are the Accelerometer (ACC), Langmuir Probe and Waves (LPW), Magnetometer (MAG), Neutral Gas and Ion Mass Spectrometer (NGIMS), Solar Wind Electron Analyzer (SWEA), Solar Wind Ion Analyzer (SWIA), and Supra-Thermal and Thermal Ion Composition (STATIC).
R. W. Zurek, R. H. Tolson, D. Baird, M. Z. Johnson, S. W. Bougher, M. Z. Johnson, and S. W. Bougher, Application of MAVEN accelerometer and attitude control data to Mars atmospheric characterization. Space Sci. Rev. (2014). doi: 10.1007/s11214-014-0095-x
Areocentric longitude of the Sun, Ls, is used as an angular measure of the Mars year: Ls = 0, 90, 180, and 270 correspond to the start of the northern spring, summer, fall, and winter, respectively.
A. O. Nier, M. B. McElroy, Composition and structure of Mars' upper atmosphere: Results from the neutral mass spectrometers on Viking 1 and 2. J. Geophys. Res. 82, 4341-4349 (1977). doi: 10.1029/JS082i028p04341
G. M. Keating et al., The structure of the upper atmosphere of mars: In situ accelerometer measurements from mars global surveyor. Science 279, 1672-1676 (1998). doi: 10.1126/science.279.5357.1672; pmid: 9497278
S. W. Bougher et al., Mars Global Ionosphere-Thermosphere Model: Solar cycle, seasonal and diurnal variations of the Mars upper atmosphere. J. Geophys. Res. 120, 311-342 (2015). doi: 10.1002/2014JE004715
P. R. Mahaffy et al., The Neutral Gas and Ion Mass Spectrometer on the Mars Atmosphere and Volatile Evolution Mission. Space Sci. Rev. 185, 1-25 (2014). doi: 10.1007/s11214-014-0043-9
J.-Y. Chaufray, F. Leblanc, E. Quemerais, J.-L. Bertaux, Martian oxygen density at the exobase deduced from OI 1304.-nm observations by Spectroscopy for the Investigation of the Characteristics of the Atmosphere of Mars on Mars Express. J. Geophys. Res. 114 (E2), E02006 (2009). doi: 10.1029/2008JE003130
A. Valeille, M. R. Combi, S. W. Bougher, V. Tenishev, A. F. Nagy, Three-dimensional study of Mars upper thermosphereionosphere and hot oxygen corona: Solar cycle, seasonal variations and evolution over history. J. Geophys. Res. 114, E11006 (2009). doi: 10.1029/2009JE003389
W. B. Hanson, S. Sanatani, D. R. Zuccaro, The Martian ionosphere as observed by the Viking retarding potential analyzers. J. Geophys. Res. 82, 4351-4363 (1977). doi: 10.1029/JS082i028p04351
P. R. Mahaffy et al., Abundance and isotopic composition of gases in the martian atmosphere from the Curiosity rover. Science 341, 263-266 (2013). pmid: 23869014
D. Snowden et al., The thermal structure of Titan's upper atmosphere, I. Temperature profiles from Cassini INMS observations. Icarus 226, 552-582 (2013). doi: 10.1016/j.icarus.2013.06.006
P. R. Mahaffy et al., Structure and composition of the neutral upper atmosphere of Mars from the MAVEN NGIMS investigation. Geophys. Res. Lett. 42, (2015). doi: 10.1002/2015GL065329
F. LeBlanc, J. Y. Chaufray, J. Lilenstein, O. Witasse, J.-L. Bertaux, Martian dayglow as seen by the SPICAM UV spectrograph on Mars Express. J. Geophys. Res. 111 (E9), E09S11 (2006). doi: 10.1029/2005JE002664
A. Stiepen et al., Mars thermospheric scale height: CO Cameron and CO2 + dayglow observations from Mars Express. Icarus 245, 295-305 (2015). doi: 10.1016/j.icarus.2014.09.051
A. S. Medvedev, E. Yiʇit, P. Hartogh, E. Becker, Influence of gravity waves on the Martian atmosphere: General circulation modeling. J. Geophys. Res. 116 (E10), E10004 (2011). doi: 10.1029/2011JE003848
A. Medvedev, E. Yigit, Thermal effects of internal gravity waves in the Martian upper atmosphere. Geophys. Res. Lett. 39, L05201 (2012). doi: 10.1029/2012GL050852
The exobase of a given planetary upper atmosphere is traditionally estimated as the altitude at which, for a single constituent atmosphere, the collision mean free path equals the temperature scale height of this constituent. For Mars, atomic O is the dominant species considered, and calculated global averaged exobase heights vary from ~170 km (Equinox, solar minimum conditions) to ~185 km (Equinox, solar maximum conditions) (43). In reality, the exobase is not a fixed altitude that separates collisional (thermosphere) and collisionless (exosphere) regimes. Instead, a full transitional domain must be considered, which extends from the altitude at which a hot O particle produced in this region has a high probability to be thermalized to an altitude at which the collision frequency is very low. Modern hot O exosphere models confirm that this transitional domain extends from ~135 to 300 km altitude (43). The ~200 km altitude is commonly used as an approximation for the traditional exobase altitude.
A. F. Nagy et al., The plasma environment of Mars. Space Sci. Rev. 111, 33-114 (2004). doi: 10.1023/B:SPAC.0000032718.47512.92
E. Dubinin et al., Plasma morphology at Mars. ASPERA-3 observations. Space Sci. Rev. 126, 209-238 (2006). doi: 10.1007/s11214-006-9039-4
M. H. G. Zhang, J. G. Luhmann, A. J. Kliore, J. Kim, A post-Pioneer Venus reassessment of the Martian dayside ionosphere as observed by radio occultation methods. J. Geophys. Res. 95 (B9), 14,829-14,839 (1990). doi: 10.1029/JB095iB09p14829
D. A. Gurnett et al., Large density fluctuations in the Martian ionosphere as observed by the Mars Express radar sounder. Icarus 206, 83-94 (2010). doi: 10.1016/j.icarus.2009.02.019
P. Withers, A review of observed variability in the dayside ionosphere of Mars. Adv. Space Res. 44, 277-307 (2009). doi: 10.1016/j.asr.2009.04.027
F. Duru et al., Steep, transient density gradients in the Martian ionosphere similar to the ionopause at Venus. J. Geophys. Res. 114 (A12), A12310 (2009). doi: 10.1029/2009JA014711
J. E. P. Connerney et al., The MAVEN magnetic field investigation. Space. Sci. Rev. 10.1007s11214-015-0169-4 (2015).
J. S. Halekas et al., The Solar Wind Ion Analyzer for MAVEN. Space Sci. Rev. (2013). doi: 10.1007/s11214-013-0029-z
R. Ergun et al., Dayside electron temperature and density profiles at Mars: First results from the MAVEN Langmuir Probe and Waves instrument. Geophys. Res. Lett. 42, (2015). doi: 10.1002/2015GL065280
J. L. Fox, A. Dalgarno, Ionization, luminosity, and heating of the upper atmosphere of Mars. J. Geophys. Res. 84 (A12), 7315 (1979). doi: 10.1029/JA084iA12p07315
A. J. Kopf, D. A. Gurnett, D. D. Morgan, D. L. Kirchner, Transient layers in the topside ionosphere of Mars. Geophys. Res. Lett. 35, L17102 (2008). doi: 10.1029/2008GL034948
P. Withers et al., A clear view of the multifaceted dayside ionosphere of Mars. Geophys. Res. Lett. 39, L18202 (2012). doi: 10.1029/2012GL053193
H. Shinagawa, T. E. Cravens, The ionospheric effects of a weak intrinsic magnetic field at Mars. J. Geophys. Res. 97 (E1), 1027-1035 (1992). doi: 10.1029/91JE02720
S. Kirkwood, H. Nilsson; Kirkwood and Nilsson, High-latitude sporadic-E and other thin layers -The role of magnetospheric electric fields. Space Sci. Rev. 91, 579-613 (2000). doi: 10.1023/A:1005241931650
J. L. Fox, K. E. Yeager, Morphology of the near-Terminator Martian ionosphere: A comparison of models and data. J. Geophys. Res. 111 (A10), A10309 (2006). doi: 10.1029/2006JA011697
C. Dong et al., Solar wind interaction with Mars upper atmosphere: Results from the one-way coupling between the multi-fluid MHD model and the MTGCM model. Geophys. Res. Lett. 41, 2708-2715 (2014). doi: 10.1002/2014GL059515
C. Dong et al., Solar wind interaction with the Martian upper atmosphere: Crustal field orientation, solar cycle, and seasonal variations. J. Geophys. Res. 120, (2015). doi: 10.1002/2015JA020990
E. Kallio, S. Barabash, Atmospheric effects of precipitating energetic hydrogen atoms on the Martian atmosphere. J. Geophys. Res. 106 (A1), 165-177 (2001). doi: 10.1029/2000JA002003
J. S. Halekas et al., MAVEN observations of solar wind hydrogen deposition in the atmosphere of Mars. Geophys. Res. Lett. 42, (2015). doi: 10.1002/2015GL064693
J. Luhmann, J. U. Kozyra, Dayside Pickup Oxygen Ion Precipitation at Venus and Mars -Spatial Distributions, Energy Deposition and Consequences. J. Geophys. Res. 96 (A4), 5457-5467 (1991). doi: 10.1029/90JA01753
D. Najib, A. Nagy, G. Toth, Y. Ma, Three-dimensional, multifluid, high spatial resolution MHD model studies of the solar wind interaction with Mars. J. Geophys. Res. (2011). doi: 10.1029/2010JA016272
Y. Lee, M. Combi, V. Tenishev, S. Bougher, D. Pawlowski, N. Franklin, Impacts of the Martian crustal magnetic fields on the thermosphere, ionosphere, and hot oxygen corona. Bulletin of the American Astronomical Society, 46, abstract 306.01, Div. for Planetary Sciences, 46th Annual Meeting, Tucson, AZ (2014).