No full text
Paper published in a book (Scientific congresses and symposiums)
Extraction of temporal gait parameters using a reduced number of wearable accelerometers
Boutaayamou, Mohamed; Denoël, Vincent; Bruls, Olivier et al.
2016In Proceedings of the 9th International Conference on Bio-inspired Systems and Signal Processing
Peer reviewed
 

Files


Full Text
No document available.

Send to



Details



Keywords :
Gait analysis; Wearable accelerometers; Wavelet analysis; Validation; Gait segmentation; Gait events; Heel-off; Heel strike; Toe strike; Toe-off; Heel clearance; Stance time; Swing time; Stride time.
Abstract :
[en] Wearable inertial systems often require many sensing units in order to reach an accurate extraction of temporal gait parameters. Reconciling easy and fast handling in daily clinical use and accurate extraction of a substantial number of relevant gait parameters is a challenge. This paper describes the implementation of a new accelerometer-based method that accurately and precisely detects gait events/parameters from acceleration signals measured from only two accelerometers attached on the heels of the subject’s usual shoes. The first step of the proposed method uses a gait segmentation based on the continuous wavelet transform (CWT) that provides only a rough estimation of motionless periods defining relevant local acceleration signals. The second step uses the CWT and a novel piecewise-linear fitting technique to accurately extract, from these local acceleration signals, gait events, each labelled as heel strike (HS), toe strike (TS), heel-off (HO), toe-off (TO), or heel clearance (HC). A stride-by-stride validation of these extracted gait events was carried out by comparing the results with reference data provided by a kinematic 3D analysis system (used as gold standard) and a video camera. The temporal accuracy ± precision of the gait events were for HS: 7.2 ms ± 22.1 ms, TS: 0.7 ms ± 19.0 ms, HO: ‒3.4 ms ± 27.4 ms, TO: 2.2 ms ± 15.7 ms, and HC: 3.2 ms ± 17.9 ms. In addition, the occurrence times of right/left stance, swing, and stride phases were estimated with a mean error of ‒6 ms ± 15 ms, ‒5 ms ± 17 ms, and ‒6 ms ± 17 ms, respectively. The accuracy and precision achieved by the extraction algorithm for healthy subjects, the simplification of the hardware (through the reduction of the number of accelerometer units required), and the validation results obtained, convince us that the proposed accelerometer-based system could be extended for assessing pathological gait (e.g., for patients with Parkinson’s disease).
Research Center/Unit :
Laboratoire d'Analyse du Mouvement Humain (LAMH) / Signal and Image Exploitation (INTELSIG) - University of Liège, Liège, Belgium
Disciplines :
Electrical & electronics engineering
Author, co-author :
Boutaayamou, Mohamed ;  Université de Liège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Exploitation des signaux et images
Denoël, Vincent  ;  Université de Liège > Département ArGEnCo > Analyse sous actions aléatoires en génie civil
Bruls, Olivier  ;  Université de Liège > Département d'aérospatiale et mécanique > Laboratoire des Systèmes Multicorps et Mécatroniques
Demonceau, Marie ;  Université de Liège > Département des sciences de la motricité > Kinésithérapie générale et réadaptation
Maquet, Didier ;  Université de Liège > Département des sciences de la motricité > Département des sciences de la motricité
Forthomme, Bénédicte ;  Université de Liège > Département des sciences de la motricité > Rééducation du membre supérieur
Croisier, Jean-Louis  ;  Université de Liège > Département des sciences de la motricité > Kinésithérapie générale et réadaptation
Schwartz, Cédric  ;  Université de Liège > Département des sciences de la motricité > Kinésithérapie générale et réadaptation
Verly, Jacques ;  Université de Liège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Exploitation des signaux et images
Garraux, Gaëtan  ;  Université de Liège > Département des sciences biomédicales et précliniques > Biochimie et physiologie du système nerveux
Language :
English
Title :
Extraction of temporal gait parameters using a reduced number of wearable accelerometers
Publication date :
2016
Event name :
BIOSIGNALS 2016: 9th International Conference on Bio-inspired Systems and Signal Processing
Event place :
Rome, Italy
Event date :
21 - 23 February, 2016
Audience :
International
Main work title :
Proceedings of the 9th International Conference on Bio-inspired Systems and Signal Processing
Peer reviewed :
Peer reviewed
Available on ORBi :
since 16 November 2015

Statistics


Number of views
337 (51 by ULiège)
Number of downloads
0 (0 by ULiège)

Scopus citations®
 
3
Scopus citations®
without self-citations
2
OpenCitations
 
2
OpenAlex citations
 
5

Bibliography


Similar publications



Contact ORBi