Strekalova & al 2014 Article in Press Deuterium content of water increases depression susceptibility The potential role of a serotonin-related mechanism.pdf
[en] Environmental factors can significantly affect disease prevalence, including neuropsychiatric disorders such as depression. The ratio of deuterium to protium in water shows substantial geographical variation, which could affect disease susceptibility. Thus the link between deuterium content of water and depression was investigated, both epidemiologically, and in a mouse model of chronic mild stress. We performed a correlation analysis between deuterium content of tap water and rates of depression in regions of the USA. Next, we used a 10-day chronic stress paradigm to test whether 2-week deuterium-depleted water treatment (91 ppm) affects depressive-like behavior and hippocampal SERT. The effect of deuterium-depletion on sleep electrophysiology was also evaluated in naive mice. There was a geographic correlation between a content of deuterium and the prevalence of depression across the USA. In the chronic stress model, depressive-like features were reduced in mice fed with deuterium-depleted water, and SERT expression was decreased in mice treated with deuterium-treated water compared with regular water. Five days of predator stress also suppressed proliferation in the dentate gyrus; this effect was attenuated in mice fed with deuterium-depleted water. Finally, in naive mice, deuterium-depleted water treatment increased EEG indices of wakefulness, and decreased duration of REM sleep, phenomena that have been shown to result from the administration of selective serotonin reuptake inhibitors (SSRI). Our data suggest that the deuterium content of water may influence the incidence of affective disorder-related pathophysiology and major depression, which might be mediated by the serotoninergic mechanisms.
Bauer M., Glenn T., Alda M., Andreassen O.A., Ardau R., Bellivier F., et al. Impact of sunlight on the age of onset of bipolar disorder. Bipolar Disord 2012, 14:654-663.
Ljubicic D., Stipcevic T., Pivac N., Jakovljevic M., Muck-Seler D. The influence of daylight exposure on platelet 5-HT levels in patients with major depression and schizophrenia. J Photochem Photobiol B 2007, 89:63-69.
Maes M., De Meyer F., Thompson P., Peeters D., Cosyns P. Synchronized annual rhythms in violent suicide rate, ambient temperature and the light-dark span. Acta Psychiatr Scand 1994, 90:391-396.
Brown J.S. Role of selenium and other trace elements in the geography of schizophrenia. Schizophr Bull 1994, 20:387-398.
Flaten T.P. Aluminium as a risk factor in Alzheimer's disease, with emphasis on drinking water. Brain Res Bull 2001, 55:187-196.
Dutton A., Wilkinson B.H., Welker J.M., Bowen G.J., Lohmann K.C. Spatial distribution and seasonal variation in 18O/16O of modern precipitation and river water across the conterminous USA. Hydrol Processes 2005, 19:4121-4146.
Kendall C., Coplen T.B. Distribution of oxygen-18 and deuterium in river waters across the United States. Hydrol Processes 2001, 15:1363-1393.
Vasilescu V., Katona E. Deuteration as a tool in investigating the role of water in the structure and function of excitable membranes. Methods Enzymol 1986, 127:662-678.
McNaught A, Wilkinson A. Compendium of chemical terminology: IUPAC recommendations, 2nd ed. Blackwell Science; 1997.
Daansgaard W. Stable isotopes in precipitation. Tellus 1964, 16:436-438.
Friedman I., Redfield A., Schoen B., Harris J. The variation of the deuterium content of natural waters in the hydrologic cycle. Rev Geophys 1964, 2:177-224.
Gat J., Magaritz M. Climactic variations in the Eastern Mediterranean Sea area. Naturwissenschaften 1980, 67:80-87.
Bowen G.J., Ehleringer J.R., Chesson L.A., Stange E., Cerling T.E. Stable isotope ratios of tap water in the contiguous United States. Water Resour Res 2007, 2007.
Couch Y., Anthony D.C., Dolgov O., Revischin A., Festoff B., Santos A.I., et al. Microglial activation, increased TNF and SERT expression in the prefrontal cortex define stress-altered behaviour in mice susceptible to anhedonia. Brain Behav Immun 2013, 29:136-146.
Jacobs B.L., van Praag H., Gage F.H. Adult brain neurogenesis and psychiatry: a novel theory of depression. Mol Psychiatry 2000, 5:262-269.
Cespuglio R., Rousset C., Debilly G., Rochat C., Millan M.J. Acute administration of the novel serotonin and noradrenaline reuptake inhibitor, S33005, markedly modifies sleep-wake cycle architecture in the rat. Psychopharmacology (Berl) 2005, 181:639-652.
Gonzalez O, Berry JT, Promotion NCfCDPaH. Current depression among adults - United States, 2006 and 2008. Morbidity and mortality weekly report. Centers for Disease Control and Prevention; 2010. p. 1229-35.
Strekalova T., Gorenkova N., Schunk E., Dolgov O., Bartsch D. Selective effects of citalopram in a mouse model of stress-induced anhedonia with a control for chronic stress. Behav Pharmacol 2006, 17:271-287.
Strekalova T., Spanagel R., Bartsch D., Henn F.A., Gass P. Stress-induced anhedonia in mice is associated with deficits in forced swimming and exploration. Neuropsychopharmacology 2004, 29:2007-2017.
Strekalova T., Wotjak C.T., Schachner M. Intrahippocampal administration of an antibody against the HNK-1 carbohydrate impairs memory consolidation in an inhibitory learning task in mice. Mol Cell Neurosci 2001, 17:1102-1113.
Ursin R. Serotonin and sleep. Sleep Med Rev 2002;6:55-69.
Descamps A., Rousset C., Millan M.J., Spedding M., Delagrange P., Cespuglio R. Influence of the novel antidepressant and melatonin agonist/serotonin2C receptor antagonist, agomelatine, on the rat sleep-wake cycle architecture. Psychopharmacology (Berl) 2009, 205:93-106.
Cryan J.F., Valentino R.J., Lucki I. Assessing substrates underlying the behavioral effects of antidepressants using the modified rat forced swimming test. Neurosci Biobehav Rev 2005, 29:547-569.
Ledikwe J.H., Blanck H.M., Khan L.K., Serdula M.K., Seymour J.D., Tohill B.C., et al. Dietary energy density determined by eight calculation methods in a nationally representative United States population. J Nutr 2005, 135:273-278.
Katz R.J., Roth K.A., Carroll B.J. Acute and chronic stress effects on open field activity in the rat: implications for a model of depression. Neurosci Biobehav Rev 1981, 5:247-251.
Willner P., Towell A., Sampson D., Sophokleous S., Muscat R. Reduction of sucrose preference by chronic unpredictable mild stress, and its restoration by a tricyclic antidepressant. Psychopharmacology 1987, 93:358-364.
Hamilton M. Rating depressive patients. J Clin Psychiatry 1980, 41:21-24.
Tonissaar M., Mallo T., Eller M., Haidkind R., Koiv K., Harro J. Rat behavior after chronic variable stress and partial lesioning of 5-HT-ergic neurotransmission: effects of citalopram. Prog Neuropsychopharmacol Biol Psychiatry 2008, 32:164-177.
Wang S.H., Zhang Z.J., Guo Y.J., Teng G.J., Chen B.A. Hippocampal neurogenesis and behavioural studies on adult ischemic rat response to chronic mild stress. Behav Brain Res 2008, 189:9-16.
Harro J, Kiive E, Laas K, Vaht M, Comasco E, Oreland L, et al. P. 4. a. 006 MAOA VNTR genotype, psychiatric vulnerability and life course in a population-representative longitudinal study. Eur Neuropsychopharmacol 2012;22:S360.
Willner P. Chronic mild stress (CMS) revisited: consistency and behavioural-neurobiological concordance in the effects of CMS. Neuropsychobiology 2005, 52:90-110.
Cline B.H., Steinbusch H.W., Malin D., Revishchin A.V., Pavlova G.V., Cespuglio R., et al. The neuronal insulin sensitizer dicholine succinate reduces stress-induced depressive traits and memory deficit: possible role of insulin-like growth factor 2. BMC Neurosci 2012, 13:110.
Cline B.H., Anthony D.C., Lysko A., Dolgov O., Anokhin K., Schroeter C., et al. Lasting downregulation of the lipid peroxidation enzymes in the prefrontal cortex of mice susceptible to stress-induced anhedonia. Behav Brain Res 2014, pii: S0166-4328(14)00255-1. 10.1016/j.bbr.2014.04.037.
Bergner C.L., Smolinsky A.N., Hart P.C., Dufour B.D., Egan R.J., Laporte J.L., et al. Mouse models for studying depression-like states and antidepressant drugs. Methods Mol Biol 2010, 602:267-282.
Buhl E.S., Jensen T.K., Jessen N., Elfving B., Buhl C.S., Kristiansen S.B., et al. Treatment with an SSRI antidepressant restores hippocampo-hypothalamic corticosteroid feedback and reverses insulin resistance in low-birth-weight rats. Am J Physiol Endocrinol Metab 2010, 298:E920-E929.
Ibarguen-Vargas Y., Surget A., Touma C., Palme R., Belzung C. Multifaceted strain-specific effects in a mouse model of depression and of antidepressant reversal. Psychoneuroendocrinology 2008, 33:1357-1368.
Malatynska E., Steinbusch H.W., Redkozubova O., Bolkunov A., Kubatiev A., Yeritsyan N.B., et al. Anhedonic-like traits and lack of affective deficits in 18-month-old C57BL/6 mice: Implications for modeling elderly depression. Exp Gerontol 2012, 47:552-564.
Surget A., Saxe M., Leman S., Ibarguen-Vargas Y., Chalon S., Griebel G., et al. Drug-dependent requirement of hippocampal neurogenesis in a model of depression and of antidepressant reversal. Biol Psychiatry 2008, 64:293-301.
Filipenko M.L., Beilina A.G., Alekseyenko O.V., Dolgov V.V., Kudryavtseva N.N. Increase in expression of brain serotonin transporter and monoamine oxidase a genes induced by repeated experience of social defeats in male mice. Biochem Biokhim 2002, 67:451-455.
Kohut S.J., Decicco-Skinner K.L., Johari S., Hurwitz Z.E., Baumann M.H., Riley A.L. Differential modulation of cocaine's discriminative cue by repeated and variable stress exposure: relation to monoamine transporter levels. Neuropharmacology 2012, 63:330-337.
Murrough J.W., Charney D.S. The serotonin transporter and emotionality: risk, resilience, and new therapeutic opportunities. Biol Psychiatry 2011, 69:510-512.
Kheirbek M.A., Klemenhagen K.C., Sahay A., Hen R., Neurogenesis and generalization: a new approach to stratify and treat anxiety disorders. Nat Neurosci 2012, 15:1613-1620.
Tanti A., Westphal W.P., Girault V., Brizard B., Devers S., Leguisquet A.M., et al. Region-dependent and stage-specific effects of stress, environmental enrichment, and antidepressant treatment on hippocampal neurogenesis. Hippocampus 2013, 23:797-811.
Ferres-Coy A., Pilar-Cuellar F., Vidal R., Paz V., Masana M., Cortes R., et al. RNAi-mediated serotonin transporter suppression rapidly increases serotonergic neurotransmission and hippocampal neurogenesis. Translational Psychiatry 2013, 3:e211.
Gardier A.M., Guiard B.P., Guilloux J.P., Repérant C., Coudoré F., David D.J. Interest of using genetically manipulated mice as models of depression to evaluate antidepressant drugs activity: a review. Fundam Clin Pharmacol 2009, 23:23-42.
Terada K., Izumo N., Suzuki B., Karube Y., Morikawa T., Ishibashi Y., et al. Fluvoxamine moderates reduced voluntary activity following chronic dexamethasone infusion in mice via recovery of BDNF signal cascades. Neurochem Int 2014, 69:9-13.
Cespuglio R., Marinesco S., Baubet V., Bonnet C., El Kafi B. Evidence for a sleep-promoting influence of stress. Adv Neuroimmunol 1995, 5:145-154.
Bridoux A., Laloux C., Derambure P., Bordet R., Monaca Charley C. The acute inhibition of rapid eye movement sleep by citalopram may impair spatial learning and passive avoidance in mice. J Neural Transm 2013, 120:383-389.
Neckelmann D., Bjorvatn B., Bjorkum A.A., Ursin R. Citalopram: differential sleep/wake and EEG power spectrum effects after single dose and chronic administration. Behav Brain Res 1996, 79:183-192.
Vas S., Katai Z., Kostyalik D., Pap D., Molnar E., Petschner P., et al. Differential adaptation of REM sleep latency, intermediate stage and theta power effects of escitalopram after chronic treatment. J Neural Transm 2013, 120:169-176.
Bonaventure P., Dugovic C., Kramer M., De Boer P., Singh J., Wilson S., et al. Translational evaluation of JNJ-18038683, a 5-hydroxytryptamine type 7 receptor antagonist, on rapid eye movement sleep and in major depressive disorder. J Pharmacol Exp Ther 2012, 342:429-440.
Dimpfel W., Hofmann H.C., Schober F., Todorova A. Validation of an EEG-derived spectral frequency index (SFx) for continuous monitoring of sleep depth in humans. Eur J Med Res 1998, 3:453-460.
Sommerfelt L., Ursin R. Behavioral, sleep-waking and EEG power spectral effects following the two specific 5-HT uptake inhibitors zimeldine and alaproclate in cats. Behav Brain Res 1991, 45:105-115.
Huynh M.H., Meyer T.J. Colossal kinetic isotope effects in proton-coupled electron transfer. Proc Natl Acad Sci USA 2004, 101:13138-13141.
Pomytkin I., Kolesova O. Relationship between natural concentration of heavy water isotopologs and rate of H2O2 generation by mitochondria. Bull Exp Biol Med 2006, 142:570-572.
Beranova L., Humpolickova J., Sykora J., Benda A., Cwiklik L., Jurkiewicz P., et al. Effect of heavy water on phospholipid membranes: experimental confirmation of molecular dynamics simulations. Phys Chem Chem Phys: PCCP 2012, 14:14516-14522.
Steckel F., Szapiro S. Physical properties of heavy oxygen water. Part 1-density and thermal expansion. Trans Faraday Soc 1963, 59:331-343.
Goncharuk V., Lapshin V., Burdeinaya T., Pleteneva T., Chernopyatko A., Atamanenko I., et al. Physicochemical properties and biological activity of the water depleted of heavy isotopes. J Water Chem Technol 2011, 33:8-13.
Li Y., Wang J.J., Cai J.X. Aniracetam restores the effects of amyloid-beta protein or ageing on membrane fluidity and intracellular calcium concentration in mice synaptosomes. J Neural Transm 2007, 114:1407-1411.
Ahmed A.H., Ptak C.P., Fenwick M.K., Hsieh C.L., Weiland G.A., Oswald R.E. Dynamics of cleft closure of the GluA2 ligand-binding domain in the presence of full and partial agonists revealed by hydrogen-deuterium exchange. J Biol Chem 2013, 288:27658-27666.
Lanevskij K., Japertas P., Didziapetris R., Petrauskas A. Ionization-specific prediction of blood-brain permeability. J Pharm Sci 2009, 98:122-134.
Korade Z., Kenworthy A.K. Lipid rafts, cholesterol, and the brain. Neuropharmacology 2008, 55:1265-1273.