Positron emission tomography; Fluorinated tracers; Cancer imaging; Oncology
Abstract :
[fr] Le 18F-fluorodeoxyglucose (FDG) est actuellement le seul traceur fluoré utilisé en routine en tomographie par émission de positons (TEP). Le fluor 18 peut être considéré comme le radioisotope TEP idéal avec : 1) une émission positonique de faible énergie (0,64 MeV), limitant l'irradiation reçue par le patient ainsi que le parcours du positon dans les tissus (2,3 mm), avec comme conséquence directe, une haute résolution des images TEP; 2) une période de 110 minutes permettant une radiosynthèse avec un bon rendement, un transport depuis l'établissement de radiopharmacie vers des services de médecine nucléaire distants, et des protocoles d'imagerie pouvant s'étendre sur quelques heures, ce qui facilite les études dynamiques et de processus métaboliques relativement lents. Récemment, la radiosynthèse fluorée à partir de groupes prothétiques précurseurs, qui permet le marquage de molécules bioactives dans de bonnes conditions, a donné un nouvel élan au développement de nombreux traceurs fluorés. En raison de la disponibilité du fluor, ils pourraient occuper dans un avenir proche une place importante en routine. Cet article et une revue de la littérature concernant les traceurs fluorés récemment développés et/ou en cours d'investigation, susceptibles d'être employés pour évaluer la prolifération tumorale.
Disciplines :
Oncology Radiology, nuclear medicine & imaging
Author, co-author :
Couturier, Olivier; CHU Nantes
Bodet-Milin, C.; CHU Nantes
Cherel, M.; INSERM U463 Nantes
Hustinx, Roland ; Université de Liège - ULiège > Département des sciences cliniques > Médecine nucléaire
Language :
French
Title :
Traceurs fluorés de la prolifération des cancers en tomographie par émission de positons
Alternative titles :
[fr] Fluorinated tracers for imaging tumoral proliferation with positron emission tomography
Publication date :
2004
Journal title :
Médecine Nucléaire: Imagerie Fonctionnelle et Métabolique
Schirrmeister H et al. Immunostaging in pancreatic cancer and chronic active pancreatitis: does in vivo FDG-uptake correlate with proliferative activity? J Nucl Med 2001; 42: 721-725.
Kubota R et al. Intratumoral distribution of fluorine-18- fluorodeoxyglucose in vivo: high accumulation in macrophages and granulation tissues studied by microautoradiography. J Nucl Med 1992; 33: 1972-1980.
Brown RS, et al. Intratumoral distribution of tritiated fluorodeoxyglucose in breast carcinoma: I. Are inflammatory cells important? J Nucl Med 1995; 36(10): 1854-1861.
Lewis P and Salama A Uptake of fluorine-18-fluorodeoxyglucose in sarcoidosis. J Nucl Med 1994; 35: 1647-1649.
Patz EF Jr, et al. Focal pulmonary abnormalities: evaluation with F-18 fluorodeoxyglucose PET scanning. Radiology 1993; 188(2): 487-490.
Kubota R et al. Methionine uptake by tumor tissue: a microautoradiographic comparison with FDG. J Nucl Med 1995; 36: 484-492.
Wienhard K et al. Increased amino acid transport into brain tumors measured by PET of L-(2-18F)fluorotyrosine [see comments]. J Nucl Med 1991; 32(7): 1338-1346.
Hustinx R et al. Whole-body tumor imaging using PET and 2-18F-fluoro-L-tyrosine: preliminary evaluation and comparison with 18F-FDG. J Nucl Med 2003.; 44(4): 533-539.
Amano S et al. In vivo comparison of PET and SPECT radiopharmaceuticals in detecting breast cancer. J Nucl Medicine 1998; 39(8): 1424-1427.
Inoue T et al. Biodistribution studies on L-3-[fluorine-18]fluoro-alpha- methyl tyrosine: a potential tumor-detecting agent. J Nucl Med 1998; 39(4): 663-667.
Watanabe H et al. PET imaging of musculoskeletal tumours with fluorine-18-methyltyrosine: comparison with fluorine-18 fluorodeoxy-glucose PET. Eur J Nucl Med 2000; 27: 1509-1517.
Rau FC et al. O-(2-[18F]fluoro-ethyl)-L-tyrosine (FET): a tracer for differentiation of tumour from inflammation in murine lymph nodes. Eur J Nucl Med 2002; 29: 1039-1046.
Schreckenberger M et al. First results of F-18-fluoroethyl-tyrosine PET for imaging of metastatic malignant melanoma. J Nucl Med 2001; 42: 30P
Weber WA et al. O-(2-[ 18F]fluoroethyl)-L-tyrosine and L-[methyl-11C]methionine uptake in brain tumours: initial results of a comparative study. Eur J Nucl Med 2000; 27: 542-549.
Dimitrakopoulou-Strauss A, Strauss LG, and Burger C Quantitative PET studies in pretreated melanoma patients: a comparison of 6-[ 18F] fluoro-L-dopa with 18F-FDG and (15)O-water using compartment and noncompartment analysis. J Nucl Med 2001. 42: 248-256.
Graham MM. Combined 18F-FDG-FDOPA tumor imaging for assessing response to therapy. J Nucl Med 2001. 42: 257-258.
Hoegerle S et al. 18F-DOPA positron emission tomography for tumour detection in patients with medullary thyroid carcinoma and elevated calcitonin levels. Eur J Nucl Med 2001. 28: 64-71.
Hoegerle S et al. Whole-body 18F dopa PET for detection of gastrointestinal carcinoid tumors. Radiology 2001. 220: 373-380.
Becherer A et al. Brain tumour imaging with PET: a comparison between [18F]fluorodopa and [11C]methionine. Eur J Nucl Med Mol Imaging 2003. 30(11): 1561-1567.
Sakamoto S, Ebuchi M, and Iwama T. Relative activities of thymidylate synthetase and thymidine kinase in human mammary tumours. Anticancer Res 1993. 13: 205-207.
Sherr C and Roberts J. Inhibitors of mammalian G1 cycline-dependent kinases. Genes develop 1995; 9: 1149-1163.
Toyohara J et al. Basis of FLT as cell proliferattion marker comparative uptake studies with [3H]thymidine and [3H]arabinothy-midine, and cell-analysis in 22 asynchronously growing tumor cell lines. Nucl Med Biol 2002; 29: 281-287.
Grierson J et al. Comparative uptake and cell cycle measurements with [18F]FLT vs. [3H]thymidine in mammalian tumor cells. J Nucl Med 1998; 39 (Supp.51): 229P-230P
Buck AK et al. 3-deoxy-3-[(18)F]fluorothymidine-positron emission tomography for non-invasive assessment of proliferation in pulmonary nodules. Cancer Res 2002; 62(12): 3331-3334.
Buck AK et al. Imaging proliferation in lung tumors with PET: 18F-FLT versus 18F-FDG. J Nucl Med 2003; 44(9): 1426-1431.
Dittmann H et al. [18F]FLT PET for diagnosis and staging of thoracic tumours. Eur J Nucl Med Mol Imaging 2003; 30(10): 1407-1412.
Francis DL et al. Potential impact of [18F]3′-deoxy-3′- fluoro-thymidine versus [18F]fluoro-2-deoxy-D-glucose in positron emission tomography for colorectal cancer. Eur J Nucl Med Mol Imaging 2003; 30(7): 988-994.
Barthel H et al. 3′-deoxy-3′-[18F]fluorothymidine as a new marker for monitoring tumor response to antiproliferative therapy in vivo with positron emission tomography. Cancer Res 2003; 63(13): 3791-3798.
Dittmann H et al. Early changes in [18F]FLT uptake after chemotherapy: an experimental study. Eur J Nucl Med Mol Imaging 2002; 29(11): 1462-1469.
Hara T. 18F-fluorocholine: a new oncologic PET tracer. J Nucl Med 2001; 42(12): 1815-1816.
Hara T et al. Imaging of brain tumor, lung cancer, esophagus cancer, colon cancer, prostate cancer, and bladder cancer with (HC)choline. J Nucl Med 1997; 38 (suppl): 250P.
Hara T and Yuasa M. Automated synthesis of fluorine-18 labeled choline analog: 2-fluoroethyl-dimethyl-2-oxyethylammonium. J Nucl Med 1997; 38((suppl)): 44P.
DeGrado TR et al. Synthesis and evaluation of 18F-labeled choline as an oncologic tracer for positron emission tomography: initial findings in prostate cancer. Cancer Res 2000;. 61(1): 110-117.
DeGrado T.R et al. Synthesis and evaluation of (18)F-labeled choline analogs as oncologic PET tracers. J Nucl Med 2001; 42(12): 1805-1814.
Hara T. 11C-choline and 2-deoxy-2-[18F]fluoro-D-glucose in tumor imaging with positron emission tomography. Molecular Imaging Biology 2002; 4(4): 267-273.
Price DT et al. Comparison of [18 F]fluorocholine and [18F]fluorodeoxyglucose for positron emission tomography of androgen dependent and androgen independent prostate cancer. J Urol 2002; 168(1): 273-280.
Hara T, Kosaka N and Kishi H. Development of (18)F-fluoroethylcholine for cancer imaging with PET: synthesis, biochemistry, and prostate cancer imaging. J Nucl Med 2002. 43(2): 187-199.