Anderson, R. F., S. Ali, L. I. Bradtmiller, S. H. H. Nielsen, M. Q. Fleisher, B. E. Anderson, and, L. H. Burckle, (2009), Wind-driven upwelling in the Southern Ocean and the deglacial rise in Atmospheric CO2, Science, 323, 1443-1448.
Bouttes, N., D. Paillard, D. M. Roche, V. Brovkin, and, L. Bopp, (2011), Last Glacial Maximum CO2 and δ13C successfully reconciled, Geophys. Res. Lett., 38, L02705, doi: 10.1029/2010GL044499.
Broecker, W. S., (1997), Thermohaline circulation, the Achilles heel of our climate system: Will man-made CO2 upset the current balance?, Science, 278, 1582-1588.
Broecker, W. S., (1998), Paleocean circulation during the last deglaciation: A bipolar seesaw?, Paleoceanography, 13, 119-121.
Broecker, W. S., and, E. Clark, (2001), Redistribution of carbonate ion in the deep sea, Science, 294, 2152-2155.
Broecker, W. S., and, D. McGee, (2013), The 13C record for atmospheric CO2: What is it trying to tell us?, Earth Planet. Sci. Lett., 368, 175-182.
Brovkin, V., A. Ganopolski, and, Y. Svirezhev, (1997), A continuous climate-vegetation classification for use in climate-biosphere studies, Ecol. Modell., 101, 251-261.
Brovkin, V., J. Bendtsen, M. Claussen, A. Ganopolski, C. Kubatzki, V. Petoukhov, and, A. Andreev, (2002), Carbon cycle, vegetation, and climate dynamics in the Holocene: Experiments with the CLIMBER-2 model, Global Biogeochem. Cycles, 4, 1139, doi: 10.1029/2001GB001662.
Brovkin, V., A. Ganopolski, D. Archer, and, S. Rahmstorf, (2007), Lowering of glacial atmospheric CO2 in response to changes in oceanic circulation and marine biogeochemistry, Paleoceanography, 22, PA4202, doi: 10.1029/2006PA001380.
Burke, A., and, L. F. Robinson, (2012), The Southern Ocean's role in carbon exchange during the last deglaciation, Science, 335, 557-561.
Charles, C. D., J. D. Wright, and, R. G. Fairbanks, (1993), Thermodynamics influences on the marine carbon isotope record, Paleoceanography, 8, 691-697.
Craig, H., (1957), Isotopic standards for carbon and oxygen and correction factors for mass-spectrometric analysis of carbon dioxide, Geochim. Cosmochim. Acta, 12, 133-149.
Denton, G. F., R. F. Anderson, J. R. Toggweiler, R. L. Edwards, J. M. Schaefer, and, A. E. Putnam, (2010), The last glacial termination, Science, 328, 1652-1656.
Elsig, J., J. Schmitt, D. Leuenberger, R. Schneider, M. Eyer, M. Leuenberger, F. Joos, H. Fischer, and, T. F. Stocker, (2009), Stable isotope constraints on Holocene carbon cycle changes from an Antarctic ice core, Nature, 461, 507-510.
Fichefet, T., M.-F. Loutre, P. Huybrechts, H. Goelzer, and, A. Mouchet, (2012), Assessment of modelling uncertainties in long-term climate and sea level change projections "ASTER", Final Rep., BELSPO. Bruxelles, Belgium.
Francey, R. J., C. E. Allison, D. M. Etheridge, C. M. Trudinger, I. G. Enting, M. Leuenberger, R. L. Langenfelds, E. Michel, and, L. P. Steele, (1999), A 1000-year high precision record of δ13C in atmospheric CO2, Tellus B, 51, 170-193.
Freeman, K. H., and, J. M. Hayes, (1992), Fractionation of carbon isotopes by phytoplankton and estimates of ancient CO2 levels, Global Biogeochem. Cycles, 6, 185-198.
Galbraith, E. D., E. Y. Kwon, D. Bianchi, M. P. Hain, and, J. L. Sarmiento, (2015), The impact of atmospheric pCO2 on carbon isotope ratios of the atmosphere and ocean, Global Biogeochem. Cycles, 29, 307-324, doi: 10.1002/2014GB004929.
Ganopolski, A., and, S. Rahmstorf, (2001), Rapid changes of glacial climate simulated in a coupled climate model, Nature, 409, 153-158.
Gehlen, M., L. Bopp, N. Emprin, O. Aumont, C. Heinze, and, O. Ragueneau, (2006), Reconciling surface ocean productivity, export fluxes and sediment composition in a global biogeochemical ocean model, Biogeosciences, 3, 521-537.
Gerber, M., and, F. Joos, (2013), An ensemble Kalman filter multi-tracer assimilation: Determining uncertain ocean model parameters for improved climate-carbon cycle projections, Ocean Modell., 64, 29-45.
Goosse, H., et al., (2010), Description of the Earth system model of intermediate complexity LOVECLIM version 1.2, Geosci. Model Dev., 3, 603-633.
Heinrich, H., (1988), Origin and consequences of cyclic ice rafting in the northeast Atlantic Ocean during the past 130,000 years, Quat. Res., 29, 142-152.
Heinze, C., E. Maier-Reimer, A. M. E. Winguth, and, D. Archer, (1999), A global oceanic sediment model for long-term climate studies, Global Biogeochem. Cycles, 13, 221-250.
Indermühle, A., et al., (1999), Holocene carbon cycle dynamics based on CO2 trapped in ice at Taylor Dome, Antarctica, Nature, 398, 121-126.
Jaccard, S. L., E. D. Galbraith, T. L. Froelicher, and, N. Gruber, (2014), Ocean (de)oxygenation across the last deglaciation: Insights for the future, Oceanography, 27, 26-35.
Joos, F., S. Gerber, I. C. Prentice, B. L. Otto-Bliesner, and, P. J. Valdes, (2004), Transient simulations of Holocene atmospheric carbon dioxide and terrestrial carbon since the Last Glacial Maximum, Global Biogeochem. Cycles, 18, GB2002, doi: 10.1029/2003GB002156.
Kalnay, E., et al., (1996), The NCEP/NCAR 40-year reanalysis project, Bull. Am. Meteorol. Soc., 77, 437-471.
Keeling, C. D., (1979), The Suess effect: 13carbon-14carbon interrelations, Environ. Int., 2, 229-300.
Keeling, C. D., S. C. Piper, R. B. Bacastow, M. Wahlen, T. P. Whorf, M. Heimann, and, H. A. Meijer, (2001), Exchanges of Atmospheric CO2 and 13CO2 With the Terrestrial Biosphere and Oceans From 1978 to 2000. I. Global Aspects, Scripps Inst. of Oceanography, Univ. of California, San Diego, Calif.
Köhler, P., H. Fischer, and, J. Schmitt, (2010), Atmospheric δ13CO2 and its relation to pCO2 and deep ocean δ13C during the late Pleistocene, Paleoceanography, 25, PA1213, doi: 10.1029/2008PA001703.
Krakauer, N. Y., J. T. Randerson, F. W. Primeau, N. Gruber, and, D. Menemenlis, (2006), Carbon isotope evidence for the latitudinal distribution and wind speed dependence of the air-sea gas transfer velocity, Tellus B, 58, 390-417.
Kwon, E. Y., M. P. Hain, D. M. Sigman, E. D. Galbraith, J. L. Sarmiento, and, J. R. Toggweiler, (2012), North Atlantic ventilation of "southern-sourced" deep water in the glacial ocean, Paleoceanography, 27, PA2208, doi: 10.1029/2011PA002211.
Lee, S.-Y., J. C. H. Chiang, K. Matsumoto, and, K. S. Tokos, (2011), Southern Ocean wind response to North Atlantic cooling and the rise in atmospheric CO2: Modeling perspective and paleoceanographic implications, Paleoceanography, 26, PA1214, doi: 10.1029/2010PA002004.
Lourantou, A., J. V. Lavric, P. Kohler, J.-M. Barnola, D. Paillard, E. Michel, D. Raynaud, and, J. Chappellaz, (2010), Constraint of the CO2 rise by new atmospheric carbon isotopic measurements during the last deglaciation, Global Biogeochem. Cycles, 24, GB2015, doi: 10.1029/2009GB003545.
Lynch-Stieglitz, J., T. F. Stocker, W. S. Broecker, and, R. G. Fairbanks, (1995), The influence of air-sea exchange on the isotopic composition of oceanic carbon: Observations and modeling, Global Biogeochem. Cycles, 9, 653-665.
Marchal, O., T. F. Stocker, and, F. Joos, (1998), Impact of oceanic reorganizations on the ocean carbon cycle and atmospheric carbon dioxide content, Paleoceanography, 13, 225-244.
Matsumoto, K., and, Y. Yokoyama, (2013), Atmospheric Δ14C reduction in simulations of Atlantic overturning circulation shutdown, Global Biogeochem. Cycles, 27, 296-304, doi: 10.1002/gbc.20035.
McManus, J. F., R. Francois, J. M. Gherardi, L. D. Keigwin, and, S. Brown-Leger, (2004), Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes, Nature, 428, 834-837.
Menviel, L., (2008), Climate-carbon cycle interactions on millennial to glacial timescales as simulated by a model of intermediate complexity, LOVECLIM, PhD. thesis, University of Hawai'i, Honolulu, Hawaii. [Available at http://myweb.science.unsw.edu.au/lauriemenviel/Menvielthesis2008.pdf.]
Menviel, L., and, F. Joos, (2012), Towards explaining the Holocene carbon dioxide and carbon isotope records: Results from transient carbon cycle-climate simulations, Paleoceanography, 27, PA1207, doi: 10.1029/2011PA002224.
Menviel, L., A. Timmermann, O. Timm, and, A. Mouchet, (2011), Deconstructing the last glacial termination: The role of millennial and orbital-scale forcings, Quat. Sci. Rev., 30, 1155-1172.
Menviel, L., F. Joos, and, S. P. Ritz, (2012), Modeling atmospheric CO2, stable carbon isotope and marine carbon cycle changes during the last glacial-interglacial cycle, Quat. Sci. Rev, 56, 46-68.
Menviel, L., M. H. England, K. J. Meissner, A. Mouchet, and, J. Yu, (2014a), Atlantic-Pacific seesaw and its role in outgassing CO2 during Heinrich events, Paleoceanography, 29, 58-70, doi: 10.1002/2013PA002542.
Menviel, L., A. Timmermann, T. Friedrich, and, M. H. England, (2014b), Hindcasting the continuum of Dansgaard-Oeschger variability: Mechanisms, patterns and timing, Clim. Past, 10, 63-77, doi: 10.5194/cp-10-63-2014.
Menviel, L., P. Spence, and, M. H. England, (2015), Contribution of enhanced Antarctic Bottom Water formation to Antarctic warm events and millennial-scale atmospheric CO2 increase, Earth Planet. Sci. Lett., 413, 37-50.
Mook, W. G., (1986), 13C in atmospheric CO2, Neth. J. Sea Res., 20, 211-223.
Mook, W. G., J. C. Bommerson, and, W. H. Staverman, (1974), Carbon isotope fractionation between dissolved bicarbonate and gaseous carbon dioxide, Earth Planet. Sci. Lett., 22, 169-176.
Mouchet, A., (2011), A 3D model of ocean biogeochemical cycles and climate sensitivity studies, PhD. thesis, Université de Liège, Lìege, Belgium. [Available at http://hdl.handle.net/2268/98995.]
Mouchet, A., (2013), The ocean bomb radiocarbon inventory revisited, Radiocarbon, 55, 1580-594.
Müller, S. A., F. Joos, N. R. Edwards, and, T. F. Stocker, (2006), Water mass distribution and ventilation time scales in a cost-efficient three-dimensional ocean model, J. Clim., 19, 5479-5499.
Müller, S. A., F. Joos, N. R. Edwards, and, T. F. Stocker, (2008), Modeled natural and excess radiocarbon: Sensitivities to the gas exchange formulation and ocean transport strength, Global Biogeochem. Cycles, 22, GB3011, doi: 10.1029/2007GB003065.
Najjar, R. G., J. Orr, C. L. Sabine, and, F. Joos, (1999), Biotic-HOWTO, Internal ocmip Rep., LSCE/CEA Saclay. Gif-sur-Yvette, France.
Okazaki, Y., A. Timmermann, L. Menviel, N. Harada, A. Abe-Ouchi, M. Chikamoto, A. Mouchet, and, H. Asahi, (2010), Deep water formation in the North Pacific during the last glacial termination, Science, 329, 200-204.
Okumura, Y. M., C. Deser, A. Hu, A. Timmermann, and, S.-P. Xie, (2009), North Pacific climate response to freshwater forcing in the subarctic North Atlantic: Oceanic and atmospheric pathways, J. Clim., 22, 1424-1445.
Orr, J., and, R. G. Najjar, (1999), Abiotic-HOWTO, Internal OCMIP Rep., LSCE/CEA Saclay. Gif-sur-Yvette, France.
Parekh, P., F. Joos, and, S. A. Müller, (2008), A modeling assessment of the interplay between aeolian iron fluxes and iron-binding ligands in controlling carbon dioxide fluctuations during Antarctic warm events, Paleoceanography, 23, PA4202, doi: 10.1029/2007PA001531.
Rae, J. W. B., M. Sarnthein, G. L. Foster, A. Ridgwell, P. M. Grootes, and, T. Elliott, (2014), Deep water formation in the North Pacific and deglacial CO2 rise, Paleoceanography, 29, 645-667, doi: 10.1002/2013PA002570.
Ritz, S. P., T. F. Stocker, and, F. Joos, (2011), A coupled dynamical ocean-Energy balance atmosphere model for paleoclimate studies, J. Clim., 24, 349-375.
Roth, R., and, F. Joos, (2013), A reconstruction of radiocarbon production and total solar irradiance from the Holocene 14C and CO2 records: Implications of data and model uncertainties, Clim. Past, 9, 1879-1909.
Rubino, M., et al., (2013), A revised 1000 year atmospheric δ13C-CO2 record from Law Dome and South Pole, Antarctica, J. Geophys. Res. Atmos., 118, 8482-8499, doi: 10.1002/jgrd.50668.
Saenko, O. A., A. Schmittner, and, A. J. Weaver, (2004), The Atlantic-Pacific seesaw, J. Clim., 17, 2033-2038.
Schmitt, J., et al., (2012), Carbon isotope constraints on the deglacial CO2 rise from ice cores, Science, 136, 711-714.
Schmittner, A., and, D. C. Lund, (2015), Early deglacial Atlantic overturning decline and its role in atmospheric CO2 rise inferred from carbon isotopes (δ13C), Clim. Past, 11, 135-152.
Schmittner, A., N. Gruber, A. C. Mix, R. M. Key, A. Tagliabue, and, T. K. Westberry, (2013), Biology and air-sea gas exchange controls on the distribution of carbon isotope ratios (δ13C) in the ocean, Biogeosciences, 10, 5793-5816.
Siegenthaler, U., and, K. O. Münnich, (1981), 13C/12C fractionation during CO2 transfer from air to sea, in SCORE 16: Carbon Cycle Modelling, edited by, B. Bolin, pp. 249-257, Wiley, Chichester, England.
Siegenthaler, U., and, H. Oeschger, (1987), Biospheric CO2 emissions during the past 200 years reconstructed by convolution of ice core data, Tellus B, 39, 140-154.
Skinner, L. C., S. Fallon, C. Waelbroeck, E. Michel, and, S. Barker, (2010), Ventilation of the deep Southern Ocean and deglacial CO2 rise, Science, 328, 1147-1151.
Smith, H. J., H. Fischer, M. Wahlen, D. Mastroianni, and, B. Deck, (1999), Dual modes of the carbon cycle since the Last Glacial Maximum, Nature, 400, 248-250.
Talley, L. D., (1999), Some aspects of ocean heat transport by the shallow, intermediate and deep overturning circulations, in Mechanisms of Global Climate Change at Millennial Time Scales, Geophys. Monogr. Ser., vol. 112, edited by, P. U. Clark, R. S. Webb, and, L. D. Keigwin, pp. 1-22, AGU, Washington, D. C.
Toggweiler, J. R., and, D. W. Lea, (2010), Temperature differences between the hemispheres and ice age climate variability, Paleoceanography, 25, PA2212, doi: 10.1029/2009PA001758.
Toggweiler, J. R., J. L. Russell, and, S. R. Carson, (2006), Midlatitude westerlies, atmospheric CO2, and climate change during ice ages, Paleoceanography, 21, PA2005, doi: 10.1029/2005PA001154.
Tschumi, T., F. Joos, and, P. Parekh, (2008), How important are Southern Hemisphere wind changes for low glacial carbon dioxide? A model study, Paleoceanography, 23, PA4208, doi: 10.1029/2008PA001592.
Tschumi, T., F. Joos, M. Gehlen, and, C. Heinze, (2011), Deep ocean ventilation, carbon isotopes, marine sedimentation and the deglacial CO2 rise, Clim. Past, 7, 771-800.
Turner, J. V., (1982), Kinetic fractionation of carbon-13 during calcium carbonate precipitation, Geochim. Cosmochim. Acta, 46, 1183-1191.
Wanninkhof, R., (1992), Relationship between gas exchange and wind speed over the ocean, J. Geophys. Res., 97, 7373-7381.
Zhang, J., P. D. Quay, and, D. O. Wilbur, (1995), Carbon isotope fractionation during gas-water exchange and dissolution of CO2, Geochim. Cosmochim. Acta, 59, 107-114.