Article (Scientific journals)
Evidence for two spatially separated UV continuum emitting regions in the Cloverleaf broad absorption line quasar
Sluse, Dominique; Hutsemekers, Damien; Anguita, T. et al.
2015In Astronomy and Astrophysics, 582, p. 109-12
Peer Reviewed verified by ORBi
 

Files


Full Text
2015_AA_582_A109_Evidence_for_two_spatially_separated_continuum_emitting_regions_in_cloverleaf_Sluse_et_al.pdf
Publisher postprint (724.63 kB)
Download

Published in Astronomy and Astrophysics @ https://www.aanda.org/articles/aa/abs/2015/10/aa26832-15/aa26832-15.html


All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
gravitational lensing: strong; gravitational lensing: micro; quasars: general
Abstract :
[en] Testing the standard Shakura-Sunyaev model of accretion is a challenging task because the central region of quasars where accretion takes place is unresolved with telescopes. The analysis of microlensing in gravitationally lensed quasars is one of the few techniques that can test this model, yielding to the measurement of the size and of temperature profile of the accretion disc. We present spectroscopic observations of the gravitationally lensed broad absorption line quasar H1413+117, which reveal partial microlensing of the continuum emission that appears to originate from two separated regions: a microlensed region, corresponding the compact accretion disc; and a non-microlensed region, more extended and contributing to at least 30% of the total UV-continuum flux. Because this extended continuum is occulted by the broad absorption line clouds, it is not associated with the host galaxy, but rather with light scattered in the neighbourhood of the central engine. We measure the amplitude of microlensing of the compact continuum over the rest-frame wavelength range 1000-7000 Å. Following a Bayesian scheme, we confront our measurements to microlensing simulations of an accretion disc with a temperature varying as T ∝ R[SUP]-1/ν[/SUP]. We find a most likely source half-light radius of R[SUB]1/2[/SUB] = 0.61 × 10[SUP]16[/SUP]cm (i.e., 0.002 pc) at 0.18 μm, and a most-likely index of ν = 0.4. The standard disc (ν = 4/3) model is not ruled out by our data, and is found within the 95% confidence interval associated with our measurements. We demonstrate that, for H1413+117, the existence of an extended continuum in addition to the disc emission only has a small impact on the inferred disc parameters, and is unlikely to solve the tension between the microlensing source size and standard disc sizes, as previously reported in the literature. Based on observations made with ESO Telescopes at the Paranal Observatory (Chile). ESO program ID: 386.B-0337.Appendices A and B are available in electronic form at <A href="http://www.aanda.org/10.1051/0004-6361/201526832/olm">http://www.aanda.org</A>
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Sluse, Dominique  ;  Université de Liège - ULiège
Hutsemekers, Damien ;  Université de Liège > Département d'astrophys., géophysique et océanographie (AGO) > Astroph. extragalactique et observations spatiales (AEOS)
Anguita, T.;  Departamento de Ciencias Fisicas, Universidad Andres Bello, Fernandez Concha 700, Las Condes, Santiago, Chile ; Millennium Institute of Astrophysics, Chile
Braibant, Lorraine ;  Université de Liège > Département d'astrophys., géophysique et océanographie (AGO) > Astroph. extragalactique et observations spatiales (AEOS)
Riaud, P.;  60 rue des Bergers, 75015, Paris, France)
Language :
English
Title :
Evidence for two spatially separated UV continuum emitting regions in the Cloverleaf broad absorption line quasar
Publication date :
01 October 2015
Journal title :
Astronomy and Astrophysics
ISSN :
0004-6361
eISSN :
1432-0746
Publisher :
EDP Sciences, Les Ulis, France
Volume :
582
Pages :
109-12
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
BELSPO - Service Public Fédéral de Programmation Politique scientifique
Available on ORBi :
since 27 October 2015

Statistics


Number of views
52 (7 by ULiège)
Number of downloads
72 (1 by ULiège)

Scopus citations®
 
18
Scopus citations®
without self-citations
6
OpenCitations
 
12
OpenAlex citations
 
15

Bibliography


Similar publications



Contact ORBi