[en] Carbon emissions to the atmosphere from inland waters are globally significant and mainly occur at tropical latitudes. However, processes controlling the intensity of CO2 and CH4 emissions from tropical inland waters remain poorly understood. Here, we report a data-set of concurrent measurements of the partial pressure of CO2 (pCO2) and dissolved CH4 concentrations in the Amazon (n = 136) and the Congo (n = 280) Rivers. The pCO2 values in the Amazon mainstem were significantly higher than in the Congo, contrasting with CH4 concentrations that were higher in the Congo than in the Amazon. Large-scale patterns in pCO2 across different lowland tropical basins can be apprehended with a relatively simple statistical model related to the extent of wetlands within the basin, showing that, in addition to non-flooded vegetation, wetlands also contribute to CO2 in river channels. On the other hand, dynamics of dissolved CH4 in river channels are less straightforward to predict, and are related to the way hydrology modulates the connectivity between wetlands and river channels.
Disciplines :
Aquatic sciences & oceanology
Author, co-author :
Borges, Alberto ; Université de Liège > Département d'astrophys., géophysique et océanographie (AGO) > Océanographie chimique
Abril, G
Darchambeau, François ; Université de Liège > Département d'astrophys., géophysique et océanographie (AGO) > Océanographie chimique
Teodoru, CR
Deborde, J
Vidal, LO
Lambert, Thibault ; Université de Liège > Département d'astrophys., géophysique et océanographie (AGO) > Océanographie chimique
Bouillon, S
Language :
English
Title :
Divergent biophysical controls of aquatic CO2 and CH4 in the World’s two largest rivers
Raymond, P. A. et al. Global carbon dioxide emissions from inland waters. Nature 503, 355-359 (2013).
Le Quéré, C. et al. Global carbon budget 2014. Earth Syst. Sci. Data 7, 47-85 (2015).
Bastviken, D., Tranvik, L. J., Downing, J. A., Crill, P. M. & Enrich-Prast, A. Freshwater methane emissions offset the continental carbon sink. Science 331, 50-50 (2011).
Kirschke, S. et al. Three decades of global methane sources and sinks. Nat. Geosci. 6, 813-823 (2013).
Mitsch, W. J. et al. Wetlands, carbon, and climate change. Landscape Ecol. 28, 583-597 (2012).
Hess, L. L. et al. Wetlands of the lowland Amazon basin: Extent, vegetative cover, and dual-season inundated area as mapped with JERS-1 Synthetic Aperture Radar. Wetlands 35, 745-756 (2015).
Cole, J. J., Caraco, N. F., Kling, G. W. & Kratz, T. K. Carbon dioxide supersaturation in the surface waters of lakes. Science 265, 1568-1570 (1994).
Del Giorgio, P. A., Cole, J. J., Caraco, N. F. & Peters, R. H. Linking planktonic biomass and metabolism to net gas fluxes in northern temperate lakes. Ecology 80, 1422-1431 (1999).
Cole, J. J. & Caraco, N. F. Carbon in catchments: connecting terrestrial carbon losses with aquatic metabolism. Mar. Fresh. Res. 52, 101-110 (2001).
Prairie, Y. T., Bird, D. F. & Cole, J. J. The summer metabolic balance in the epilimnion of southeastern Quebec lakes. Limnol. Oceanogr. 47, 316-321 (2002).
Richey, J. E., Melack, J. M., Aufdenkampe, A. K., Ballester, V. M. & Hess, L. Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO2. Nature 416, 617-620 (2002).
Sobek, S., Tranvik, L. J. & Cole, J. J. Temperature independence of carbon dioxide supersaturation in global lakes. Global Biogeochem. Cycles 19(GB2003), doi: 10.1029/2004GB002264 (2005).
Battin, T. J. et al. Biophysical controls on organic carbon fluxes in fluvial networks. Nature Geosci. 1, 95-100 (2008).
Tranvik, L. J. et al. Lakes and reservoirs as regulators of carbon cycling and climate. Limnol. Oceanogr. 54, 2298-2314 (2009).
Butman, D. & Raymond, P. A. Significant efflux of carbon dioxide from streams and rivers in the United States. Nature Geosci. 4, 839-842 (2011).
Finlay, K., Leavitt, P. R., Wissel, B. & Prairie, Y. T. Regulation of spatial and temporal variability of carbon flux in six hard-water lakes of the northern Great Plains. Limnol. Oceanogr. 54, 2553-2564 (2009).
Stets, E. G., Striegl, R. G., Aiken, G. R., Rosenberryj, D. O. & Winter, T. C. Hydrologic support of carbon dioxide flux revealed by whole-lake carbon budgets. J. Geophys. Res. 114(G01008), doi: 10.1029/2008JG000783 (2009).
McDonald, C. P., Stets, E. G., Striegl, R. G. & Butman, D. Inorganic carbon loading as a primary driver of dissolved carbon dioxide concentrations in the lakes and reservoirs of the contiguous United States. Global Biogeochem. Cycles 27, doi: 10.1002/ gbc.20032 (2013).
Borges, A. V. et al. Carbon cycling of Lake Kivu (East Africa): net autotrophy in the epilimnion and emission of CO2 to the atmosphere sustained by geogenic inputs. Plos One 9(10), e109500, doi: 10.1371/journal.pone.0109500 (2014).
Marcé, R. et al. Carbonate weathering as a driver of CO2 supersaturation in lakes. Nature Geosci. 8, 107-111 (2015).
Johnson, M. S. et al. CO2 efflux from Amazonian headwater streams represents a significant fate for deep soil respiration. Geophys. Res. Lett. 35, L17401, doi: 10.1029/2008GL034619 (2008).
Hotchkiss, E. R. et al. Sources of and processes controlling CO2 emissions change with the size of streams and rivers. Nature Geosci. 8, 696-699 (2015).
Melack, J. M. & Engle, D. L. An organic carbon budget for an Amazon floodplain lake. Verh. Internat. Verein. Limnol. 30, 1179-1182 (2009).
Abril, G. et al. Amazon River carbon dioxide outgassing fuelled by wetlands. Nature 505, 395-398 (2014).
Melack, J. M. et al. Regionalization of methane emissions in the Amazon Basin with microwave remote sensing. Global Change Biol. 10, 530-544 (2004).
Engle, D. L., Melack, J. M., Doyle, R. D. & Fisher, T. R. High rates of net primary production and turnover of floating grasses on the Amazon floodplain: implications for aquatic respiration and regional CO2 flux. Glob. Change Biol. 14, 369-381 (2008).
Borges, A. V. et al. Globally significant greenhouse-gas emissions from African inland waters, Nature Geosci. 8, 637-642 (2015).
Teodoru, C. et al. Spatial variability and temporal dynamics of greenhouse gas (CO2, CH4, N2O) concentrations and fluxes along the Zambezi River mainstem and major tributaries, Biogeosciences 12, 2431-2453 (2015).
Melack, J. M. in The Large-scale Biosphere Atmosphere Programme in Amazonia (eds Nagy, L., Forsberg, B. & Artaxo, P.) (Springer, 2015).
Junk, W. J. in Transport of carbon in the major World rivers (eds Degens, E. T., Kempe, S. & Herrera, R.) 267-283 (Part 3. Mitt. Geol. Paläont. Inst. University Hamburg, SCOPE/UNEP Sonderbd. 58, 1985).
Ward, N. D. et al. The compositional evolution of dissolved and particulate organic matter along the lower Amazon River-Óbidos to the ocean. Mar. Chem. doi: 10.1016/j.marchem.2015.06.013.
Marwick, T. R., Borges, A. V., Van Acker, K., Darchambeau, F. & Bouillon, S. Disproportionate contribution of riparian inputs to organic carbon pools in freshwater systems, Ecosystems 17, 974-989 (2014).
Devol, A. H., Richey J. E., Forsberg B. R. & Martinelli, L. A. Seasonal dynamics of CH4 emissions from the amazon river floodplain to the troposphere. J. Geophys. Res. 95, 16417-16426 (1990).
Bartlett, K. B., Crill, P. M., Bonassi, J. A., Richey, J. E. & Harriss, R. C. Methane flux from the Amazon River flooplain: emissions during rising water. J. Geophys. Res. 95(D10), 16773-16788 (1990).
Abril, G. et al. Technical Note: Large overestimation of calculated pCO2 in acidic, organic-rich freshwaters. Biogeosciences 12, 67-78 (2015).
Aufdenkampe, A. K. et al. Riverine coupling of biogeochemical cycles between land, oceans, and atmosphere. Front. Ecol. Environ. 9, 53-60 (2011).
Mann, P. J. et al. The biogeochemistry of carbon across a gradient of streams and rivers within the Congo Basin. J. Geophys. Res. Biogeosci. 119, doi: 10.1002/2013JG002442 (2014).
Bouillon, S. et al. Contrasting biogeochemical characteristics of right-bank tributaries and a comparison with the mainstem Oubangui River, Central African Republic (Congo River basin). Sci. Rep. 4, 5402, doi: 10.1038/srep05402 (2014).
Hamilton, S. K., Sippel, S. J. & Melack, J. M. Oxygen depletion and carbon-dioxide and methane production in waters of the Pantanal wetland of Brazil. Biogeochemistry 30, 115-141 (1995).
Balagizi, C. M. et al. River geochemistry, chemical weathering and atmospheric CO2 consumption rates in the Virunga Volcanic Province (East Africa). Geochem. Geophys. Geosyst. doi: 10.1002/2015GC005999 (2015).
Ward, N. D. et al. Degradation of terrestrially derived macromolecules in the Amazon River. Nature Geosci. 6, 530-533 (2013).
Bwangoy, J.-R. B., Hansen, M. C., Roy, D. P., De Grandi, G. & Justice, C. O. Wetland mapping in the Congo Basin using optical and radar remotely sensed data and derived topographical indices. Remote Sens. Environ. 114, 73-86 (2010).
Melack, J. M. & Forsberg, B. in Biogeochemistry of the Amazon Basin and its Role in a Changing World (eds McClain, M. E., Victoria, R. L. & Richey, J. E.). 235-276 (Oxford University Press, 2001).
Rudorff, C. M., Melack, J. M., MacIntyre, S., Barbosa, C. C. F. & Novo, E. M. L. M. Seasonal and spatial variability in CO2 emissions from a large floodplain lake in the lower Amazon. J. Geophys. Res. Biogeosci. 116(G04007), doi: 10.1029/2011JG001699 (2011).
Polsenaere, P. et al. Thermal enhancement of gas transfer velocity of CO2 in an Amazon floodplain lake revealed by eddy covariance measurements. Geophys. Res. Lett. 40, 1734-1740, doi: 10.1002/grl.50291 (2013).
Lee, H. et al. Characterization of terrestrial water dynamics in the Congo Basin using GRACE and satellite radar altimetry. Remote Sens. Environ. 115, 3530-3538 (2011).
Junk, W. J. Investigations on the ecology and production-biology of the "floating meadows" (Paspalo-Echinochloetum) on the middle Amazon, I. The floating vegetation and its ecology. Amazonia 2, 449-495 (1970).
Altor, A. E. & Mitsch, W. J. Methane flux from created riparian marshes: relationship to intermittent versus continuous inundation and emergent macrophytes. Ecol. Eng. 28, 224-234 (2006).
Belger, L., Forsberg, B. R. & Melack, J. M. Carbon dioxide and methane emissions from interfluvial wetlands in the upper Negro River basin, Brazil. Biogeochemistry 105, 171-183 (2001).
Runge, J. in Large Rivers: Geomorpholgy and Management (ed Gupta, A.) 293-309 (John Wiley & Sons, 2008).
Sawakuchi, H. O. et al. Methane emissions from Amazonian Rivers and their contribution to the global methane budget. Global Change Biol. 20, 2829-2840 (2014).
Bastviken, D. et al. Methane emissions from Pantanal, South America, during the low water season: Toward more comprehensive sampling. Environ. Sci. Technol. 44, 5450-5455 (2010).
Frankignoulle, M., Borges, A. & Biondo, R. A new design of equilibrator to monitor carbon dioxide in highly dynamic and turbid environments. Water Res. 35, 1344-1347 (2001).
Weiss, R. F. Determinations of carbon dioxide and methane by dual catalyst flame ionization chromatography and nitrous oxide by electron capture chromatography. J. Chromatogr. Sci. 19, 611-616 (1981).
Richey, J. E., Devol, A. H., Wofy, S. C., Victoria, R. & Riberio, M. N. G. Biogenic gases and the oxidation and reduction of carbon in Amazon River and floodplain waters. Limnol. Oceanogr. 33, 551-561 (1988).
Meybeck, M., Dürr, H. H. & Vörösmarty, C. J. Global coastal segmentation and its river catchment contributors: A new look at land-ocean linkage. Global Biogeochem. Cycles 20, GB1S90, doi: 10.1029/2005GB002540 (2006).
Raymond, P. A. et al. Scaling the gas transfer velocity and hydraulic geometry in streams and small rivers. Limnol. Oceanogr.: Fluids Environm. 2, 41-53 (2012).
Lehner, B. & Döll, P. Development and validation of a global database of lakes, reservoirs and wetlands. J. Hydrol. 296, 1-22 (2004).
Weiss, R. F. Carbon dioxide in water and seawater: the solubility of a non-ideal gas. Mar. Chem. 2, 203-215 (1974).
Eva, H. D. et al. A land cover map of South America. Global Change Biol. 10, 731-744 (2004).
Mayaux, P., Bartholomé, E., Fritz, S. & Belward A. A new land-cover map of Africa for the year 2000. J. Biogeogr. 31, 861-877 (2004).
U.S. Geological Survey's Earth Resources Observation and Science Center, HYDRO1K elevation derivative database, (2000) Date of access: 16/09/2014 https://lta.cr.usgs.gov/HYDRO1K.
Dai, A., Qian, T., Trenberth, K. E. & Milliman, J. D. Changes in continental freshwater discharge from 1948 to 2004. J. Clim. 22, 2773-2792 (2009).
Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Clim. 25, 1965-1978 (2005).
Baccini, A., Laporte, N., Goetz, S. J., Sun, M. & Dong, H. A first Map of tropical Africa's above-ground biomass derived from satellite imagery. Environ. Res. Lett. 3, 045011, doi: 10.1088/1748-9326/3/4/045011 (2008).