electric power generation; frequency control; learning (artificial intelligence); power engineering computing; support vector machines; time seriesBelgian system; ancillary services; generator behaviour; primary frequency control behaviour; supervised automatic learning; support-vector machines; time-series
Résumé :
[en] In this paper we propose a methodology based on supervised automatic learning in order to classify the behaviour of generators in terms of their performance in providing primary frequency control ancillary services. The problem is posed as a time-series classification problem, and handled by using state-of- the-art supervised learning methods such as ensembles of decision trees and support-vector machines combined with several preprocessing techniques. The method was designed in the context of the Belgian system and is validated on real-life data composed of more than 600 time-series recorded on this system.
Disciplines :
Ingénierie électrique & électronique
Auteur, co-auteur :
Cornélusse, Bertrand ; Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes et modélisation
Wehenkel, Louis ; Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes et modélisation
Wera, Claude
Langue du document :
Anglais
Titre :
Automatic learning for the classification of primary frequency control behaviour
Tom Fawcett. Roc graphs: Notes and practical considerations for researchers. HP Laboratories, MS 1143, 1501 Page Mill Road, Palo Alto, CA 94304, 2004.
Yoav Freund and Robert E. Schapire. Experiments with a new boosting algorithm. Machine Learning: Proceedings of the Thirteenth International Conference, 1996.
Pierre Geurts. Contributions to decision tree induction: bias/variance tradeoff and time series classification. PhD thesis, University of Liège, Belgium, May 2002.
Pierre Geurts, Damien Ernst, and Louis Wehenkel. Extremely randomized trees. Machine Learning, 36(1):3-42, 2006.
Bernard Scholkopf and Alexander J. Smola. Learning with Kernels. MIT press, Cambridge, Massachussets, 2002.
J.A.K. Suykens and J. Vandewalle. Least squares support vector machine classifiers. Kluwer Academic Publishers, 1999.
Louis Wehenkel. Automatic learning techniques in power systems. Kluwer Academic, Boston, 1998.