[en] The common hippopotamus (Hippopotamus amphibius L.) is part of the animal species endangered because of multiple human pressures. Monitoring of species for conservation is then essential, and the development of census protocols has to be chased. UAV technology is considering as one of the new perspectives for wildlife survey. Indeed, this technique has many advantages but its main drawback is the generation of a huge amount of data to handle. This study aims at developing an algorithm for automatic count of hippos, by exploiting thermal infrared aerial images acquired from UAV. This attempt is the first known for automatic detection of this species. Images taken at several flight heights can be used as inputs of the algorithm, ranging from 38 to 155 meters above ground level. A Graphical User Interface has been created in order to facilitate the use of the application. Three categories of animals have been defined following their position in water. The mean error of automatic counts compared with manual delineations is +2.3% and shows that the estimation is unbiased. Those results show great perspectives for the use of the algorithm in populations monitoring after some technical improvements and the elaboration of statistically robust inventories protocols.
Disciplines :
Environmental sciences & ecology
Author, co-author :
Lhoest, Simon ; Université de Liège > Ingénierie des biosystèmes (Biose) > Laboratoire de Foresterie des régions trop. et subtropicales
Linchant, Julie ; Université de Liège > Ingénierie des biosystèmes (Biose) > Gestion des ressources forestières et des milieux naturels
Quevauvillers, Samuel ; Université de Liège > Ingénierie des biosystèmes (Biose) > Gestion des ressources forestières et des milieux naturels
Vermeulen, Cédric ; Université de Liège > Ingénierie des biosystèmes (Biose) > Laboratoire de Foresterie des régions trop. et subtropicales
Lejeune, Philippe ; Université de Liège > Ingénierie des biosystèmes (Biose) > Gestion des ressources forestières et des milieux naturels
Language :
English
Title :
HOW MANY HIPPOS (HOMHIP): Algorithm for automatic counts of animals with infra-red thermal imagery from UAV
Publication date :
2015
Journal title :
International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Abd-Elrahman, A., Pearlstine, L. & Percival, F., 2005. Development of Pattern Recognition Algorithm for Automatic Bird Detection from Unmanned Aerial Vehicle Imagery. Surveying and Land Information Science, 65(1), pp. 37-45.
Chabot, D., 2009. Systematic evaluation of a stock Unmanned Aerial Vehicle (UAV) system for small-scale wildlife survey applications. M.Sc. Thesis. McGill University, Montreal, Quebec, Canada.
Cunningham, D.J., Anderson, W.H. & Anthony, R.M., 1996. An image-processing program for automated counting. Wildlife Society Bulletin, 24(2), pp. 345-346.
Delvingt, W., 1978. Ecologie de l'hippopotame (Hippopotamus amphibius L.) au Parc National des Virunga (Zaïre). Thèse de doctorat. Faculté des Sciences Agronomiques de l'Etat, Gembloux, Belgique.
Franke, U., Goll, B., Hohmann, U. & Heurich, M., 2012. Aerial ungulate surveys with a combination of infrared and high-resolution natural colour images. Animal Biodiversity and Conservation, 35(2), pp. 285-293.
Gilmer, D.S., Brass, J.A., Strong, L.L. & Card, D.H., 1988. Goose counts from aerial photographs using an optical digitizer. Wildlife Society Bulletin, 16(1), pp. 204-206.
Gougeon, E.A., 1995. Comparison of possible multispectral classification schemes for tree crowns individually delineated on high spatial resolution MEIS images. Canadian Journal of Remote Sensing, 21(1), pp. 1-9.
Grenzdörffer, G.J., 2013. UAS-based automatic bird count of a common gull colony. In: International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-1/W2(4-6 September), pp. 169-174.
Jones, G.P., Pearlstine, L.G. & Percival, H.F., 2006. An Assessment of Small Unmanned Aerial Vehicles for Wildlife Research. Wildlife Society Bulletin, 34(3), pp. 750-758.
Koh, L.P. & Wich, S.A., 2012. Dawn of drone ecology: low-cost autonomous aerial vehicles for conservation. Tropical Conservation Science, 5(2), pp. 121-132.
Laliberte, A.S. & Ripple, W.J., 2003. Automated wildlife counts from remotely sensed imagery. Wildlife Society Bulletin, 31(2), 362-371.
Lewison, R. & Oliver, W. (2008). The IUCN Red List of Threatened Species http://www.iucnredlist.org/details-/10103/0 (14 March 2015).
Lillesand, T.M. & Kiefer, R.W., 2000. Remote sensing and image interpretation. Fourth Edition. Wiley and Sons, New York, USA.
Linchant, J., Lejeune, P. & Vermeulen, C., 2014. Les drones au secours de la grande faune menacée de RDC. Parcs & Réserves, 69(3), pp. 5-13.
McGaughey, R.J., Carson, W.W., Reutebuch, S.E. & Andersen, H.E., 2004. Direct measurement of individual tree characteristics from LIDAR data. In: Proceedings of the Annual ASPRS Conference, Denver, May 23-28, 2004. American Society of Photogrammetry and Remote Sensing, Bethesda, MD.
Meyer, P., Staenz, K. & Itten, K.I., 1996. Semi-automated procedures for tree species identification in high spatial resolution data from digitized colour infrared-aerial photography. ISPRS Journal of Photogrammetry and Remote Sensing, 51(1), pp. 5-16.
Mulero-Pázmány, M., Stolper, R., Van Essen, L.D., Negro, J.J. & Sassen, T., 2014. Remotely Piloted Aircraft Systems as a Rhinoceros Anti-Poaching Tool in Africa. PLoS One, 9(1), pp. 1-10.
Quackenbush, L.J., Hopkins, P.F. & Kinn, G.J., 2000. Developing forestry products from high resolution digital aerial imagery. Photogrammetric Engineering and Remote Sensing, 66(11), pp. 1337-1346.
Sasse, D.B., 2003. Job-related mortality of wildlife workers in the United States, 1937-2000. Wildlife Society Bulletin, 31(4), pp. 1000-1003.
Vermeulen, C., Lejeune, P., Lisein, J., Sawadogo, P. & Bouché, P., 2013. Unmanned Aerial Survey of Elephants. Plos One 8(2), e54700.