R. Hertel, Nat. Nanotechnol. 8, 318 (2013). NNAABX 1748-3387 10.1038/nnano.2013.81
V. Pribiag, I.N. Krivorotov, G.D. Fuchs, P.M. Braganca, O. Ozatay, J.C. Sankey, D.C. Ralph, and R.A. Buhrman, Nat. Phys. 3, 498 (2007). NPAHAX 1745-2473 10.1038/nphys619
B. Van Waeyenberge, Nature (London) 444, 461 (2006). NATUAS 0028-0836 10.1038/nature05240
K. Lee, S.-K. Kim, Y.-S. Yu, Y.-S. Choi, K. Yu. Guslienko, H. Jung, and P. Fischer, Phys. Rev. Lett. 101, 267206 (2008). PRLTAO 0031-9007 10.1103/PhysRevLett.101.267206
R. Hertel, S. Gliga, M. Fähnle, and C. M. Schneider, Phys. Rev. Lett. 98, 117201 (2007). PRLTAO 0031-9007 10.1103/PhysRevLett.98.117201
I. Radu, Nature (London) 472, 205 (2011). NATUAS 0028-0836 10.1038/nature09901
K. Ando, S. Takahashi, J. Ieda, H. Kurebayashi, T. Trypiniotis, C.H.W. Barnes, S. Maekawa, and E. Saitoh, Nat. Mater. 10, 655 (2011). NMAACR 1476-1122 10.1038/nmat3052
W. Zhu, D. Xiao, Y. Liu, S.J. Gon, and C. Duan, Sci. Rep. 4, 4117 (2014). SRCEC3 2045-2322
D.E. Parkes, R. Beardsley, S. Bowe, I. Isakov, P.A. Warburton, K.W. Edmonds, R.P. Campion, B.L. Gallagher, A.W. Rushforth, and S.A. Cavill, Appl. Phys. Lett. 105, 062405 (2014). APPLAB 0003-6951 10.1063/1.4892942
N. Lei, Nat. Commun. 4, 1378 (2013). NCAOBW 2041-1723 10.1038/ncomms2386
N. Hur, S. Park, P.A. Sharma, J.S. Ahn, S. Guha, and S.-W. Cheong, Nature (London) 429, 392 (2004). NATUAS 0028-0836 10.1038/nature02572
J. Lou, M. Liu, D. Reed, Y. Ren, and N.X. Sun, Adv. Mater. 21, 2536 (2009). ADVMEW 0935-9648 10.1002/adma.200803439
D.E. Parkes, S.A. Cavill, A.T. Hindmarch, P. Wadley, F. McGee, C.R. Staddon, K.W. Edmonds, R.P. Campion, B.L. Gallagher, and A.W. Rushforth, Appl. Phys. Lett. 101, 072402 (2012). APPLAB 0003-6951 10.1063/1.4745789
S.A. Cavill, D.E. Parkes, J. Miguel, S.S. Dhesi, K.W. Edmonds, R.P. Campion, and A.W. Rushforth, Appl. Phys. Lett. 102, 032405 (2013). APPLAB 0003-6951 10.1063/1.4789396
S. Cherepov, P.K. Amiri, J.G. Alzate, K. Wong, M. Lewis, P. Upadhyaya, J. Nath, M. Bao, A. Bur, T. Wu, G.P. Carman, A. Khitun, and K.L. Wang, Appl. Phys. Lett. 104, 082403 (2014). APPLAB 0003-6951 10.1063/1.4865916
T.A. Ostler, M.O.A. Ellis, D. Hinzke, and U. Nowak, Phys. Rev. B 90, 094402 (2014). PRBMDO 1098-0121 10.1103/PhysRevB.90.094402
See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevLett.115.067202 which includes the equivalence of square and circular structures. Supplemental Material contains Refs. [22-27].
U. Atxitia, T. Ostler, J. Barker, R.F. L. Evans, R.W. Chantrell, and O. Chubykalo-Fesenko, Phys. Rev. B 87, 224417 (2013). PRBMDO 1098-0121 10.1103/PhysRevB.87.224417
U. Atxitia, O. Chubykalo-Fesenko, N. Kazantseva, D. Hinzke, U. Nowak, and R.W. Chantrell, Appl. Phys. Lett. 91, 232507 (2007). APPLAB 0003-6951 10.1063/1.2822807
K. Lebecki and U. Nowak, J. Appl. Phys. 113, 023906 (2013). JAPIAU 0021-8979 10.1063/1.4774411
K. Vahaplar, A.M. Kalashnikova, A.V. Kimel, D. Hinzke, U. Nowak, R. Chantrell, A. Tsukamoto, A. Itoh, A. Kirilyuk, and Th. Rasing, Phys. Rev. Lett. 103, 117201 (2009). PRLTAO 0031-9007 10.1103/PhysRevLett.103.117201
T.A. Ostler, M.O.A. Ellis, D. Hinzke, and U. Nowak, Phys. Rev. B 90, 094402 (2014). PRBMDO 1098-0121 10.1103/PhysRevB.90.094402
A.J. Newell, W. Williams, and D.J. Dunlop, J. Geophys. Res. 98, 9551 (1993). JGREA2 0148-0227 10.1029/93JB00694
M.J. Donahue and D.G. Porter, 1999, http://math.nist.gov/oommf.
M. Rinaldi, T.G. Bjåstad, L. Løvstakken, K. Kristoffersen, and H. Torp, IEEE Trans. Sonics Ultrason. 57, 38 (2010). IESUAU 0018-9537 10.1109/TUFFC.2010.1476
The energy needed to switch the core is calculated following the method of J.-M. Hu, Z. Li, L.-Q. Chen, and C.-W. Nan, Nat. Commun. 2, 553 (2011), and is of the order (Equation presented), where (Equation presented) is the number of rf cycles needed to switch the core, (Equation presented) is the remnant polarization of the ferroelectric, (Equation presented) is the device area, and (Equation presented) is the peak amplitude of the rf voltage. NCAOBW 2041-1723 10.1038/ncomms1564
According to Ref. [4] a 30 Oe linear rf field requires (Equation presented) to switch the vortex core for a Fe based device. For a 600 nm (Equation presented) coplanar waveguide (the waveguide is set slightly larger than the 500 nm device) 0.143 W is required to generate this field, see G.B.G Stenning, New J. Phys. 17, 013019 (2015). In the 10 ns needed to switch the core the energy requirement is therefore (Equation presented) nJ. NJOPFM 1367-2630 10.1088/1367-2630/17/1/013019