Baukrowitz, T., and G. Yellen. 1995. Modulation of K+ current by frequency and external [K+]: a tale of two inactivation mechanisms. Neuron. 15:951-960. doi:10.1016/0896-6273(95)90185-X
Chesler, M. 1990. The regulation and modulation of pH in the nervous system. Prog. Neurobiol. 34:401-427. doi:10.1016/0301-0082(90)90034-E
Chesler, M., and K. Kaila. 1992. Modulation of pH by neuronal activity. Trends Neurosci. 15:396-402. doi:10.1016/0166-2236(92)90191-A
Claydon, T.W., M.R. Boyett, A. Sivaprasadarao, K. Ishii, J.M. Owen, H.A. O'Beirne, R. Leach, K. Komukai, and C.H. Orchard. 2000. Inhibition of the K + channel kv1.4 by acidosis: protonation of an extracellular histidine slows the recovery from N-type inactivation. J. Physiol. 526:253-264. doi:10.1111/j.1469-7793.2000.00253.x
Cohen, A., Y. Ben-Abu, S. Hen, and N. Zilberberg. 2008. A novel mechanism for human K2P2.1 channel gating. Facilitation of C-type gating by protonation of extracellular histidine residues. J. Biol. Chem. 283:19448-19455. doi:10.1074/jbc.M801273200
Combet, C., M. Jambon, G. Deléage, and C. Geourjon. 2002. Geno3D: automatic comparative molecular modelling of protein. Bioinformatics. 18:213-214. doi:10.1093/bioinformatics/18.1.213 (Pubitemid 34145058)
Coulter, K.L., F. Périer, C.M. Radeke, and C.A. Vandenberg. 1995. Identification and molecular localization of a pH-sensing domain for the inward rectifier potassium channel HIR. Neuron. 15:1157-1168. doi:10.1016/0896-6273(95) 90103-5
Dilly, S., A. Graulich, A. Farce, V. Seutin, J.F. Liegeois, and P. Chavatte. 2005. Identification of a pharmacophore of SKCa channel blockers. J. Enzyme Inhib. Med. Chem. 20:517-523. doi:10.1080/14756360500210989 (Pubitemid 43994749)
Doyle, D.A., J. Morais Cabral, R.A. Pfuetzner, A. Kuo, J.M. Gulbis, S.L. Cohen, B.T. Chait, and R. MacKinnon. 1998. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science. 280:69-77. doi:10.1126/science.280.5360.69
Fedida, D., S. Zhang, D.C. Kwan, C. Eduljee, and S.J. Kehl. 2005. Synergistic inhibition of the maximum conductance of Kv1.5 channels by extracellular K+ reduction and acidification. Cell Biochem. Biophys. 43:231-242. doi:10.1385/CBB:43:2:231
Geiger, D., D. Becker, B. Lacombe, and R. Hedrich. 2002. Outer pore residues control the H(+) and K(+) sensitivity of the Arabidopsis potassium channel AKT3. Plant Cell. 14:1859-1868. doi:10.1105/tpc.003244
Hartveit, E., and M.L. Veruki. 2007. Studying properties of neurotransmitter receptors by non-stationary noise analysis of spontaneous postsynaptic currents and agonist-evoked responses in outside-out patches. Nat. Protoc. 2:434-448. doi:10.1038/nprot.2007.47 (Pubitemid 47040059)
Hirschberg, B., J. Maylie, J.P. Adelman, and N.V. Marrion. 1998. Gating of recombinant small-conductance Ca-activated K+ channels by calcium. J. Gen. Physiol. 111:565-581. doi:10.1085/jgp.111.4.565
Jäger, H., and S. Grissmer. 2001. Regulation of a mammalian Shaker-related potassium channel, hKv1.5, by extracellular potassium and pH. FEBS Lett. 488:45-50. doi:10.1016/S0014-5793(00)02396-6 (Pubitemid 32332804)
Jäger, H., and S. Grissmer. 2004. Characterization of the outer pore region of the apamin-sensitive Ca2+-activated K+ channel rSK2. Toxicon. 43:951-960. doi:10.1016/j.toxicon.2004.03.025 (Pubitemid 38781030)
Kehl, S.J., C. Eduljee, D.C. Kwan, S. Zhang, and D. Fedida. 2002. Molecular determinants of the inhibition of human Kv1.5 potassium currents by external protons and Zn(2+). J. Physiol. 541:9-24. doi:10.1113/jphysiol.2001.014456
Kelly, T., and J. Church. 2004. pH modulation of currents that contribute to the medium and slow afterhyperpolarizations in rat CA1 pyramidal neurones. J. Physiol. 554:449-466. doi:10.1113/jphysiol.2003.051607 (Pubitemid 38181355)
Köhler, M., B. Hirschberg, C.T. Bond, J.M. Kinzie, N.V. Marrion, J. Maylie, and J.P. Adelman. 1996. Small-conductance, calcium-activated potassium channels from mammalian brain. Science. 273:1709-1714. doi:10.1126/science.273. 5282.1709 (Pubitemid 26317786)
Kwan, D.C., D. Fedida, and S.J. Kehl. 2006. Single channel analysis reveals different modes of Kv1.5 gating behavior regulated by changes of external pH. Biophys. J. 90:1212-1222. doi:10.1529/biophysj.105.068577
Lin, M.T., R. Luján, M. Watanabe, J.P. Adelman, and J. Maylie. 2008. SK2 channel plasticity contributes to LTP at Schaffer collateral-CA1 synapses. Nat. Neurosci. 11:170-177. doi:10.1038/nn2041
Liu, B., D.R. Westhead, M.R. Boyett, and J. Warwicker. 2007. Modelling the pH-dependent properties of Kv1 potassium channels. J. Mol. Biol. 368:328-335. doi:10.1016/j.jmb.2007.02.041 (Pubitemid 46483492)
Long, S.B., E.B. Campbell, and R. Mackinnon. 2005. Crystal structure of a mammalian voltage-dependent Shaker family K+ channel. Science. 309:897-903. doi:10.1126/science.1116269
Prole, D.L., P.A. Lima, and N.V. Marrion. 2003. Mechanisms underlying modulation of neuronal KCNQ2/KCNQ3 potassium channels by extracellular protons. J. Gen. Physiol. 122:775-793. doi:10.1085/jgp.200308897
Pusch, M. 1990. Open-channel block of Na+ channels by intracellular Mg2+. Eur. Biophys. J. 18:317-326.
Sailer, C.A., H. Hu, W.A. Kaufmann, M. Trieb, C. Schwarzer, J.F. Storm, and H.G. Knaus. 2002. Regional differences in distribution and functional expression of small-conductance Ca2+-activated K+ channels in rat brain. J. Neurosci. 22:9698-9707.
Sailer, C.A., W.A. Kaufmann, J. Marksteiner, and H.G. Knaus. 2004. Comparative immunohistochemical distribution of three small-conductance Ca 2+-activated potassium channel subunits, SK1, SK2, and SK3 in mouse brain. Mol. Cell. Neurosci. 26:458-469. doi:10.1016/j.mcn.2004.03.002
Shakkottai, V.G., I. Regaya, H. Wulff, Z. Fajloun, H. Tomita, M. Fathallah, M.D. Cahalan, J.J. Gargus, J.M. Sabatier, and K.G. Chandy. 2001. Design and characterization of a highly selective peptide inhibitor of the small conductance calcium-activated K+ channel, SkCa2. J. Biol. Chem. 276:43145-43151. doi:10.1074/jbc.M106981200 (Pubitemid 33691582)
Sigworth, F.J. 1980. The variance of sodium current fluctuations at the node of Ranvier. J. Physiol. 307:97-129. (Pubitemid 11253739)
Soh, H., and C.S. Park. 2001. Inwardly rectifying current-voltage relationship of small-conductance Ca2+-activated K+ channels rendered by intracellular divalent cation blockade. Biophys. J. 80:2207-2215. doi:10.1016/S0006-3495(01)76193-0
Soh, H., and C.S. Park. 2002. Localization of divalent cation-binding site in the pore of a small conductance Ca(2+)-activated K( +) channel and its role in determining current-voltage relationship. Biophys. J. 83:2528-2538. doi:10.1016/S0006-3495(02)75264-8
Steidl, J.V., and A.J. Yool. 1999. Differential sensitivity of voltage-gated potassium channels Kv1.5 and Kv1.2 to acidic pH and molecular identification of pH sensor. Mol. Pharmacol. 55:812-820.
Stocker, M., and P. Pedarzani. 2000. Differential distribution of three Ca(2+)-activated K(+) channel subunits, SK1, SK2, and SK3, in the adult rat central nervous system. Mol. Cell. Neurosci. 15:476-493. doi:10.1006/mcne.2000.0842
Stocker, M., K. Hirzel, D. D'hoedt, and P. Pedarzani. 2004. Matching molecules to function: neuronal Ca2+-activated K+ channels and afterhyperpolarizations. Toxicon. 43:933-949. doi:10.1016/j.toxicon.2003. 12.009
Thompson, A.N., D.J. Posson, P.V. Parsa, and C.M. Nimigean. 2008. Molecular mechanism of pH sensing in KcsA potassium channels. Proc. Natl. Acad. Sci. USA. 105:6900-6905. doi:10.1073/pnas.0800873105
Tombaugh, G.C., and R.M. Sapolsky. 1993. Evolving concepts about the role of acidosis in ischemic neuropathology. J. Neurochem. 61:793-803. doi:10.1111/j.1471-4159.1993.tb03589.x
Ureche, O.N., R. Baltaev, L. Ureche, N. Strutz-Seebohm, F. Lang, and G. Seebohm. 2008. Novel insights into the structural basis of pH-sensitivity in inward rectifier K+ channels Kir2.3. Cell. Physiol. Biochem. 21:347-356. doi:10.1159/000129629
Vallee, B.L., and D.S. Auld. 1990. Active-site zinc ligands and activated H2O of zinc enzymes. Proc. Natl. Acad. Sci. USA. 87:220-224. doi:10.1073/pnas.87.1.220 (Pubitemid 20033040)
von Hanwehr, R., M.L. Smith, and B.K. Siesjö. 1986. Extra- and intracellular pH during near-complete forebrain ischemia in the rat. J. Neurochem. 46:331-339. doi:10.1111/j.1471-4159.1986.tb12973.x (Pubitemid 16149621)
Woodhull, A.M. 1973. Ionic blockage of sodium channels in nerve. J. Gen. Physiol. 61:687-708. doi:10.1085/jgp.61.6.687
Xia, X.M., B. Fakler, A. Rivard, G. Wayman, T. Johnson-Pais, J.E. Keen, T. Ishii, B. Hirschberg, C.T. Bond, S. Lutsenko, et al. 1998. Mechanism of calcium gating in small-conductance calcium-activated potassium channels. Nature. 395:503-507. doi:10.1038/26758 (Pubitemid 28462445)