electromagnetic interferences (EMI) shielding material
Abstract :
[en] A multifunctional hybrid material class in the form of a sandwich panel has been developed towards the com- bined optimization of mechanical and electromagnetic absorption performance. The faces of the panel are made of glass fibre reinforced epoxy composites and the core is made of carbon nanotube reinforced polymer foam filling a metallic honeycomb. The different processing strategies and options tested to fabricate the core material are described aswell as the associated scientific and technological issues. The most efficient processing route is by foaming the nanocomposite with a chemical foaming agent directly inside the honeycomb. This route offers a good surface finish and the operation can be achieved in one step. But, in order to produce large panels with a semi-continuous process, thermo-mechanical insertion of the foamed nanocomposite with supercritical CO2 can be more suitable. The characterization of the electromagnetic absorption of the panels produced by dif- ferent routes shows that the performance is not much sensitive to processing defects making possible upscaling to mass production.
Research Center/Unit :
Center for Education and Research on Macromolecules (CERM)
Disciplines :
Chemistry Materials science & engineering
Author, co-author :
Bollen, Pierre; Université catholique de Louvain (UCL), Research Center in Architectured and Composite Materials (ARCOMAT)
Quievy, Nicolas; Université catholique de Louvain (UCL), Research Center in Architectured and Composite Materials (ARCOMAT)
Detrembleur, Christophe ; University of Liège - ULiège > Department of Chemistry > Center for Education and Research on Macromolecules (CERM)
Thomassin, Jean-Michel ; University of Liège - ULiège > Department of Chemistry > Center for Education and Research on Macromolecules (CERM)
Monnereau, Laure; University of Liège - ULiège > Department of Chemistry > Center for Education and Research on Macromolecules (CERM)
Bailly, Christian; Université catholique de Louvain (UCL), Research Center in Architectured and Composite Materials (ARCOMAT), Institute of Condensed Matter and Nanosciences
Huynen, Isabelle; Université catholique de Louvain (UCL), Research Center in Architectured and Composite Materials (ARCOMAT), nstitute of Information and Communication Technologies, Electronics and Applied Mathematics
Pardoen, Thomas; Université catholique de Louvain (UCL), Research Center in Architectured and Composite Materials (ARCOMAT), Institute of Mechanics, Materials, and Civil Engineering
Language :
English
Title :
Processing of a new class of multifunctional hybrid for electromagnetic absorption based on a foam filled honeycomb
Publication date :
05 January 2016
Journal title :
Materials and Design
ISSN :
0261-3069
Publisher :
Elsevier Science, Oxford, United Kingdom
Volume :
89
Pages :
323-334
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
FRIA - Fonds pour la Formation à la Recherche dans l'Industrie et dans l'Agriculture F.R.S.-FNRS - Fonds de la Recherche Scientifique The Walloon Region in the frame of the Winnomat II "Multimasec" project
Bollen P., Quiévy N., Huynen I., Bailly C., Detrembleur C., Thomassin J., Pardoen T. Multifunctional architectured materials for electromagnetic absorption. Scripta Mater. 2013, 68:50-54. (noteArchitectured Materials).
Alavi Nia A., Sadeghi M. The effects of foam filling on compressive response of hexagonal cell aluminum honeycombs under axial loading-experimental study. Mater. Des. 2010, 31:1216-1230.
Bollen P., Quiévy N., Detrembleur C., Thomassin J., Bailly C., Pardoen T., Huynen I. Electromagnetic absorption of sandwich panel made of glass fiber reinforced polymer and nanocomposite foam filled honeycomb. 2012 International Symposium on Electromagnetic Compatibility (EMC EUROPE) 2012, 1-6.
Bafekrpour E., Molotnikov A., Weaver J.C., Bréchet Y., Estrin Y. Responsive Materials: A Novel Design for Enhanced Machine-Augmented Composites. Scientific Reports 4 2014.
Bouaziz O., Bréchet Y., Embury J. Heterogeneous and architectured materials: a possible strategy for design of structural materials. Adv. Eng. Mater. 2008, 10:24-36.
Thomassin J.-M., Jérôme C., Pardoen T., Bailly C., Huynen I., Detrembleur C. Polymer/carbon based composites as electromagnetic interference (EMI) shielding materials. Mater. Sci. Eng. R 2013, 74:211-232.
Bauhofer W., Kovacs J.Z. A review and analysis of electrical percolation in carbon nanotube polymer composites. Compos. Sci. Technol. 2009, 69:1486-1498. (CNT-NET 07 Special Issue with regular papers).
Saib A., Bednarz L., Daussin R., Bailly C., Lou X., Thomassin J., Pagnoulle C., Detrembleur C., Jérôme R., Huynen I. Carbon nanotube composites for broadband microwave absorbing materials. IEEE Trans. Microwave Theory Tech. 2006, 54:2745-2754.
Pegel S., Potschke P., Petzold G., Alig I., Dudkin S.M., Lellinger D. Dispersion, agglomeration, and network formation of multiwalled carbon nanotubes in polycarbonate melts. Polymer 2008, 49:974-984.
Potschke P., Bhattacharyya A.R., Janke A. Melt mixing of polycarbonate with multiwalled carbon nanotubes: microscopic studies on the state of dispersion. Eur. Polym. J. 2004, 40:137-148.
Zhang R., Dowden A., Deng H., Baxendale M., Peijs T. Conductive network formation in the melt of carbon nanotube/thermoplastic polyurethane composite. Compos. Sci. Technol. 2009, 69:1499-1504. (noteCNT-NET 07 Special Issue with regular papers).
Fernandez M., Landa M., Munoz M.E., Santamara A. Electrical conductivity of PUR/MWCNT nanocomposites in the molten state, during crystallization and in the solid state. Eur. Polym. J. 2011, 47:2078-2086.
Misra S.K., Ansari T.I., Valappil S.P., Mohn D., Philip S.E., Stark W.J., Roy I., Knowles J.C., Salih V., Boccaccini A.R. Poly(3-hydroxybutyrate) multifunctional composite scaffolds for tissue engineering applications. Biomaterials 2010, 31:2806-2815.
Jell G., Verdejo R., Safinia L., Shaffer M.S.P., Stevens M.M., Bismarck A. Carbon nanotube-enhanced polyurethane scaffolds fabricated by thermally induced phase separation. J. Mater. Chem. 2008, 18:1865-1872.
Hermant M.C., Verhulst M., Kyrylyuk A.V., Klumperman B., Koning C.E. The incorporation of single walled carbon nanotubes into polymerized high internal phase emulsions to create conductive foams with a low percolation threshold. Compos. Sci. Technol. 2009, 69:656-662.
Bernal M., Molenberg I., Estravis S., Rodriguez-Perez M., Huynen I., Lopez-Manchado M., Verdejo R. Comparing the effect of carbon-based nanofillers on the physical properties of flexible polyurethane foams. J. Mater. Sci. 2012, 47:5673-5679.
Heck R.L. A review of commercially used chemical foaming agents for thermoplastic foams. J. Vinyl Add. Tech. 1998, 4:113-116.
Yang L., Fan H., Liu J., Ma Y., Zheng Q. Hybrid lattice-core sandwich composites designed for microwave absorption. Mater. Des. 2013, 50:863-871.
Vaidya U.K., Ulven C., Pillay S., Ricks H. Impact damage of partially foam-filled co injected honeycomb core sandwich composites. J. Compos. Mater. 2003, 37:611-626.
Y. Wang, F. Lee, C. Kuo, K. Baron, Open-ended cells filled with polycyanurate foam; compressive strength, 1994. , (US Patent 5338594). http://www.google.com/patents/US5338594.
Campbell J., Forte F., Hibbard G., Naguib H. Periodic cellular metal/polyurethane foam hybrid materials. J. Compos. Mater. 2009, 43:207-216.
Nia A.A., Sadeghi M. The effects of foam filling on compressive response of hexagonal cell aluminum honeycombs under axial loading experimental study. Mater. Des. 2010, 31:1216-1230.
Monnereau L., Urbanczyk L., Thomassin J.-M., Alexandre M., Jérôme C., Huynen I., Bailly C., Detrembleur C. Supercritical {CO2} and polycarbonate based nanocomposites: a critical issue for foaming. Polymer 2014, 55:2422-2431.
Zenkert D., Fund N.I. The handbook of sandwich construction. North European Engineering and Science Conference Series 1997, Engineering Materials Advisory Services.
Thomassin J.-M., Pagnoulle C., Bednarz L., Huynen I., Jérôme R., Detrembleur C. Foams of polycaprolactone/MWNT nanocomposites for efficient EMI reduction. J. Mater. Chem. 2008, 18:792-796.
Molenberg I., Bernal M.M., Bollen P., Spote D., Verdejo R., Pardoen T., Bailly C., Huynen I. Simple, convenient, and nondestructive electromagnetic characterization technique for composite and multiscale hybrid samples at microwave frequencies. Microw. Opt. Technol. Lett. 2014, 56:504-509.
Molenberg I., Huynen I. Foamed nanocomposites for EMI shielding applications. Adv. Microwave Millimeter Wave 2010, 453-470.