Anjaneyulu M., and Chopra K. Quercetin attenuates thermal hyperalgesia and cold allodynia in STZ-induced diabetic rats. Indian Journal of Experimental Biology 42 (2004) 766-769
Cameron N.E., and Cotter M.A. Neurovascular dysfunction in diabetic rats. Potential contribution of autoxidation and free radicals examined using transition metal chelating agents. The Journal of Clinical Investigation 96 (1995) 1159-1163
Cameron N.E., and Cotter M.A. Metabolic and vascular factors in the pathogenesis of diabetic neuropathy. Diabetes 46 Suppl. 2 (1997) S31-S37
Cameron N.E., and Cotter M.A. Effects of antioxidants on nerve and vascular dysfunction in experimental diabetes. Diabetes Research and Clinical Practice 45 (1999) 137-146
Cameron N.E., and Cotter M.A. Effects of protein kinase C beta inhibition on neurovascular dysfunction in diabetic rats: interaction with oxidative stress and essential fatty acid dysmetabolism. Diabetes Metabolism Research and Reviews 18 (2002) 315-323
Cameron N.E., Cotter M.A., Archibald V., Dines K.C., and Maxfield E.K. Anti-oxidant and pro-oxidant effects on nerve conduction velocity, endoneurial blood flow and oxygen tension in non-diabetic and streptozotocin-diabetic rats. Diabetologia 37 (1994) 449-459
Cameron N.E., Cotter M.A., Horrobin D.H., and Tritschler H.J. Effects of alpha-lipoic acid on neurovascular function in diabetic rats: interaction with essential fatty acids. Diabetologia 41 (1998) 390-399
Cameron N.E., Tuck J., McCabe L., and Cotter M.A. Effect of hydroxyl radical scavenger, dimethylurea, on peripheral nerve tissue perfusion, conduction velocity and nociception in experimental diabetes. Dibetologia 44 9 (2001) 1161-1169
Ciruela A., Dixon A.K., Bramwell S., Gonzalez M.I., Pinnock R.D., and Lee K. Identification of MEK1 as a novel target for the treatment of neuropathic pain. British Journal of Pharmacology 138 (2003) 751-756
Coppey L.J., Gellett J.S., Davidson E.P., Dunlap J.A., Lund D.D., Salvemini D., and Yorek M.A. Effect of M40403 treatment of diabetic rats on endoneurial blood flow, motor nerve conduction velocity and vascular function of epineurial arterioles of the sciatic nerve. British Journal of Pharmacology 134 (2001) 21-29
Coppey L.J., Gellett J.S., Davidson E.P., Dunlap J.A., Lund D.D., and Yorek M.A. Effect of antioxidant treatment of streptozotocin-induced diabetic rats on endoneurial blood flow, motor nerve conduction velocity, and vascular reactivity of epineurial arterioles of the sciatic nerve. Diabetes 50 (2001) 1927-1937
Coppey L.J., Gellett J.S., Davidson E.P., Dunlap J.A., and Yorek M.A. Effect of treating streptozotocin-induced diabetic rats with sorbinil, myo-inositol or aminoguanidine on endoneurial blood flow, motor nerve conduction velocity and vascular function of epineurial arterioles of the sciatic nerve. International Journal of Experimental Diabetes Research 3 (2002) 21-36
Cotter M.A., Love A., Watt M.J., Cameron N.E., and Dines K.C. Effects of natural free radical scavengers on peripheral nerve and neurovascular function in diabetic rats. Diabetologia 38 (1995) 1285-1294
Cotter M.A., Jack A.M., and Cameron N.E. Effects of the protein kinase C beta inhibitor LY333531 on neural and vascular function in rats with streptozotocin-induced diabetes. Clinical Science (London) 103 (2002) 311-321
Courteix C., Eschalier A., and Lavarenne J. Streptozotocin-induced diabetic rats: behavioural evidence for a model of chronic pain. Pain 53 (1993) 81-88
De Vriese A.S., Verbeuren T.J., Van de Voorde J., Lameire N.H., and Vanhoutte P.M. Endothelial dysfunction in diabetes. British Journal of Pharmacology 130 (2000) 963-974
Esparza J.L., Gomez M., Rosa N.M., Paternain J.L., Malool J., and Domigo J.L. Melatonin reduces oxidative stress and increases gene expression in the cerebral cortex and cerebellum of aluminum-exposed rats. Journal of Pineal Research 39 (2005) 129-136
Evans J.L., Goldfine I.D., Maddux B.A., and Grodsky G.M. Oxidative stress and stress-activated pathways: a unifying hypothesis of type 2 diabetes. Endocrine Reviews 23 (2002) 599-622
Feldman E.L. Oxidative stress and diabetic neuropathy: a new understanding of an old problem. Journal of Clinical Investigation 111 (2003) 431-433
Heller R., Werner-Felmayer G., and Werner E.R. Alpha-tocopherol and endothelial nitric oxide synthesis. Annals of the New York Academy of Sciences 1031 (2004) 74-85
Jensen T.S., and Baron R. Translation of symptoms and signs into mechanisms in neuropathic pain. Pain 102 (2003) 1-8
Jialal I., Devraj S., and Venugopal S. Oxidative stress, inflammation and diabetic vasculopathies: the role of alpha tocopherol therapy. Free Radical Research 36 (2002) 1331-1336
Karasu C., Dewhurst M., Stevens E.J., and Tomlinson D.R. Effects of anti-oxidant treatment on sciatic nerve dysfunction in streptozotocin-diabetic rats; comparison with essential fatty acids. Diabetologia 38 (1995) 129-134
Kishi Y., Schmelzer J.D., Yao J.K., Zollman P.J., Nickander K.K., Tritschler H.J., and Low P.A. α-Lipoic acid: effects on glucose uptake, sorbitol pathway, and energy metabolism in experimental diabetic neuropathy. Diabetes 48 (1999) 2045-2051
Kumar S., Arun K.H.S., Kaul C.L., and Sharma S.S. Effects of adenosine and adenosine A2a receptor agonist on motor nerve conduction velocity and nerve blood flow in experimental diabetic neuropathy. Neurological Research 17 (2005) 60-66
Li F., Szabo C., Southan G.J., Abatan O.I., Charniauskaya T., Stevans M.J., and Obrosova I.G. Evaluation of orally active poly(ADP-ribose)polymerase inhibitor in streptozotocin-diabetic rat model of early peripheral neuropathy. Diabetologia 47 (2004) 710-717
Love A., Cotter M.A., and Cameron N.E. Effects of the sulphydryl donor N-acetyl-l-cysteine on nerve conduction, perfusion, maturation and regeneration following freeze damage in diabetic rats. European Journal of Clinical Investigation 26 (1996) 698-706
Low P.A., Nickander K.K., and Tritschler H.J. The roles of oxidative stress and antioxidant treatment in experimental diabetic neuropathy. Diabetes 46 Suppl. 2 (1997) 38-42
Mizisin A.P., Steinhardt R.C., Brien J.S., and Calcut N.A. TX14(A), a prosaposin-derived peptide, reverses established nerve disorders in streptozotocin-diabetic rats and prevents them in galactose-fed rats. Journal of Neuropathology and Experimental Neurology 60 (2001) 953-960
Nickander K.K., McPhee B.R., Low P.A., and Tritschler H. Alpha-lipoic acid: antioxidant potency against lipid peroxidation of neural tissues in vitro and implications for diabetic neuropathy. Free Radical Biology and Medicine 21 (1996) 631-639
Nishikawa T., Edelstein D., Du X.L., Yamagishi S., Matsumura T., Kaneda Y., Yorek M.A., Beebe D., Oates P.J., Hammes H.P., Giardino I., and Brownlee M. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 404 (2000) 787-790
Obrosova I.G. Update on the pathogenesis of diabetic neuropathy. Current Diabetes Reports 3 (2003) 439-445
Obrosova I.G., Huyssen V.C., Fathallah I., Cao A., Stevens M.J., and Greene D.A. An aldose reductase inhibitor reverses early diabetes-induced changes in peripheral nerve function, metabolism, and antioxidative defense. FASEB J 16 (2002) 123-125
Obrosova I.G., Omorodolo F.L., Abatan I., Forsell M.A., Komjati K., Pacher P., Szabo C., and Stevans M.J. Role of poly(ADP) polymerase activation in diabetic neuropathy. Diabetes 53 (2004) 711-723
Paoletti F., and Mocali A. Determination of superoxide dismutase activation by purely chemical system based on NADP(H) oxidation. Methods in Enzymology 186 (1990) 209-220
Papaccio G., Baccari G.C., Frascatore S., Sellitti S., and Pisanti F.A. The vitamin-E derivative U-83836-E in the low-dose streptozotocin-treated mouse: effects on diabetes development. Diabetes Research and Clinical Research 30 (1995) 163-171
Patel T., and Gores G.J. Inhibition of bile-salt-induced hepatocyte apoptosis by the antioxidant lazaroid U83836E. Toxicology and Applied Pharmacology 142 (1997) 116-122
Pieper G.M., and Siebeneich W. Diabetes-induced endothelial dysfunction is prevented by long-term treatment with the modified iron chelator, hydroxyethyl starch conjugated-deferoxamine. Journal of Cardiovascular Pharmacology 30 (1997) 734-738
Rosen P., Ballhausen T., Bloch W., and Addicks K. Endothelial relaxation is disturbed by oxidative stress in the diabetic rat heart: influence of tocopherol as antioxidant. Diabetologia 38 (1995) 1157-1168
Rundquist I., Smith Q.R., Michel M.E., Ask P., Oberg P.A., and Rapoport S.I. Sciatic nerve blood flow measured by laser Doppler flowmetry and [14C]iodoantipyrine. American Journal of Physiology 248 (1985) H311-H317
Sagara M., Satoh J., Wada R., Yagihashi S., Takahashi K., Fukuzawa M., Muto G., Muto Y., and Toyota T. Inhibition of development of peripheral neuropathy in streptozotocin-induced diabetic rats with N-acetylcysteine. Diabetologia 39 (1996) 263-269
Saini A.K., Arun K.H.S., Kaul C.L., and Sharma S.S. Acute hyperglycemia attenuates nerve conduction velocity and nerve blood flow in male Sprague-Dawley rats: reversal by adenosine. Pharmacological Research 50 (2004) 593-599
Sekido H., Suzuki T., Jomori T., Takeuchi M., Yabe-Nishimura C., and Yagihashi S. Reduced cell replication and induction of apoptosis by advanced glycation end products in rat Schwann cells. Biochemical and Biophysical Research Communications 320 (2004) 241-248
Sima A.A., and Sugimoto K. Experimental diabetic neuropathy: an update. Diabetologia 42 (1999) 773-788
Sindhu R.K., Koo J.R., Roberts C.K., and Vaziri N.D. Dysregulation of hepatic superoxide dismutase, catalase and glutathione peroxidase in diabetes: response to insulin and antioxidant therapies. Clinical and Experimental Hypertension 26 (2004) 43-53
Singh R., Barden A., and Beilin L. Advanced glycation end-product: a review. Diabetologia 44 (2001) 129-146
Stevens E.J., Carrington A.L., and Tomlinson D.R. Nerve ischemia in diabetic rats: time-course of development, effect of insulin treatment plus comparison of streptozotocin and BB models. Diabetologia 37 (1994) 43-48
Stevens M.J., Obrosova I., Cao X., Van Huysen C., and Greene D.A. Effects of dl-alpha-lipoic acid on peripheral nerve conduction, blood flow, energy metabolism, and oxidative stress in experimental diabetic neuropathy. Diabetes 49 (2000) 1006-1015
Takeuchi M., and Low P.A. Dynamic peripheral nerve metabolic and vascular responses to exsanguination. American Journal of Physiology 253 (1987) E349-E353
VanDam P.S. Oxidative stress and diabetic neuropathy: pathophysiological mechanisms and treatment perspectives. Diabetes Metabolism Research and Reviews 18 (2002) 176-184
Vincent A.M., Russell J.W., Low P., and Feldman E.L. Oxidative stress in the pathogenesis of diabetic neuropathy. Endocrine Reviews 25 (2004) 612-628
Wang X., Mori T., Sumii T., and Lo E.H. Hemoglobin-induced cytotoxicity in rat cerebral cortical neurons: caspase activation and oxidative stress. Stroke 33 (2002) 1882-1888
Wild S., Roglic G., Green A., Sicree R., and King H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 27 (2004) 1047-1053
WuarinBierman L., Zahnd G.R., Kaufmann F., Burcklen L., and Adler J. Hyperalgesia in spontaneous and experimental animal models of diabetic neuropathy. Diabetologia 30 (1987) 653-658
Yorek M.A., Coppey L.J., Gellett J.S., and Davidson E.P. Sensory nerve innervation of epineurial arterioles of the sciatic nerve containing calcitonin gene-related peptide: effect of streptozotocin-induced diabetes. Experimental Diabesity Research 5 (2004) 187-193
Zhang D.L., Zhang Y.T., Yin J.J., and Zhao B.L. Oral administration of crataegus flavonoids protects against ischemia/reperfusion brain damage in gerbils. Journal of Neurochemistry 90 (2004) 211-219