[en] Several past studies showed that the O2(a1Δg) Venus nightglow emission at 1.27 μm is highly variable on a timescale of hours. We examine whether the intensity of this emission shows a more global trend linked to solar activity.
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Soret, Lauriane ; Université de Liège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Gérard, Jean-Claude ; Université de Liège > Département d'astrophys., géophysique et océanographie (AGO) > Département d'astrophys., géophysique et océanographie (AGO)
Language :
English
Title :
Is the O2(a1Δg) Venus nightglow emission controlled by solar activity ?
Alexander M.J. A mechanism for the Venus thermospheric superrotation. Geophys. Res. Lett. 1992, 19:2207-2210. 10.1029/92GL02110.
Barth C.A., et al. Ultraviolet emissions observed near Venus from Mariner V. Science 1967, 158(3809):1675-1678. 10.1126/science.158.3809.1675.
Bougher S.W., Borucki W.J. Venus O2 visible and IR nightglow: Implications for lower thermosphere dynamics and chemistry. J. Geophys. Res.: Planets (1991-2012) 1994, 99(E2):3759-3776. 10.1029/93JE03431.
Bougher S.W., et al. The Venus nitric oxide night airglow: Model calculations based on the Venus thermospheric general circulation model. J. Geophys. Res.: Space Phys. (1978-2012) 1990, 95(A5):6271-6284. 10.1029/JA095iA05p06271.
Chen Y., Liu L., Wan W. Does the F10.7 index correctly describe solar EUV flux during the deep solar minimum of 2007-2009?. J. Geophys. Res. 2011, 116. 10.1029/2010JA016301.
Drossart P., et al. Scientific goals for the observation of Venus by VIRTIS on ESA/Venus express mission. Planet. Space Sci. 2007, 55(12):1653-1672. 10.1016/j.pss.2007.01.003.
Gérard J.-C., et al. Distribution of the O2 infrared nightglow observed with VIRTIS on board Venus Express. Geophys. Res. Lett. 2008, 35. 10.1029/2007GL032021.
Hoshino N., et al. Characteristics of planetary-scale waves simulated by a new venusian mesosphere and thermosphere general circulation model. Icarus 2012, 217:818-830. 10.1016/j.icarus.2011.06.039.
Hueso R., et al. Morphology and dynamics of Venus oxygen airglow from Venus Express/Visible and Infrared Thermal Imaging Spectrometer observations. J. Geophys. Res. 2008, 113. 10.1029/2008je 003081.
Judge D.L., et al. First solar EUV irradiances obtained from SOHO by the SEM. Sol. Phys. 1998, 177:161-173. 10.1023/A:1004929011427.
Piccioni G., et al. Near-IR oxygen nightglow observed by VIRTIS in the Venus upper atmosphere. J. Geophys. Res. 2009, 114. 10.1029/2008je003133.
Soret L., et al. Atomic oxygen on the Venus nightside: Global distribution deduced from airglow mapping. Icarus 2012, 217:849-855. 10.1016/ j.icarus.2011.03.034.
Soret L., et al. Time variations of O2(a1δ) nightglow spots on the Venus nightside and dynamics of the upper mesosphere. Icarus 2014, 237:306-314. 10.1016/j.icarus.2014.03.034.
Stewart A.I.F., et al. Morphology of the Venus ultraviolet night airglow. J. Geophys. Res. 1980, 85(A13):7861-7870.
Stiepen A., et al. Venus nitric oxide nightglow mapping from SPICAV nadir observations. Icarus 2013, 226(1):428-436. 10.1016/j.icarus.2013.05.031.
Titov D.V., et al. Venus Express: Scientific goals, instrumentation, and scenario of the mission. Cosmic Res. 2006, 44(4):334-348. 10.1134/s001095250604 0071.
Zalucha A.M., et al. Incorporation of a gravity wave momentum deposition parameterization into the Venus Thermosphere General Circulation Model (VTGCM). J. Geophys. Res. 2013, 118:147-160. 10.1029/2012JE004168.