[en] OBJECTIVES: To study the effects exerted by two antioxidants, N-monomethyl-L-arginine (L-NMMA), as an inhibitor of nitric oxide (NO) synthesis, and N-acetylcysteine (NAC), a reactive oxygen species (ROS) scavenger, on the expression of the major growth factor involved in cartilage repair, TGF-beta, under the three isoforms beta1, beta2 and beta3, and the receptors I and II of this factor, using lipopolysaccharide (LPS)-treated human chondrocytes in culture. METHODS: Suspension cultures of human chondrocytes derived from the knee of osteoarthritic patients were treated for 48 h with lipopolysaccharide (LPS) (10 microg/ml), L-NMMA (0.5 mM) or NAC (1 mM). Nitrite levels were assayed on the culture media using the Griess spectrophotometric method. After total RNA extraction, the expression of inducible NO synthase (iNOS), TGF-beta1, TGF-beta2, TGF-beta3, TGF-beta receptors I and II, was determined by semi-quantitative polymerase chain-reaction (RT-PCR). RESULTS: LPS induced a dramatic increase of both NO production and iNOS mRNA level. The addition of L-NMMA (0.5 mM) abolished NO production without affecting iNOS mRNA levels. In contrast NAC (1 mM) strongly synergized with LPS to stimulate NO synthesis. LPS treatment did not significantly alter TGF-beta1 expression whereas L-NMMA inhibited its production. TGF-beta2 mRNA level was decreased by LPS and was not changed in the presence of L-NMMA. On the other hand, NAC was capable of counteracting the LPS-induced inhibition of TGF-beta2 expression. TGFbeta3 mRNA level was markedly reduced by LPS alone, or with both L-NMMA and NAC. Finally, the expression of TGF-betaRI was slightly increased in the presence of combined LPS and L-NMMA or NAC whereas that of TGFbeta-RII was reduced in the same conditions. CONCLUSIONS: The modulation of TGF-beta system was found to be differentially controlled by NO and ROS productions. Indeed, the control exerted on TGF-beta expression varied according to the isoform: TGF-beta1 mRNA level depends on NO whereas that of TGF-beta2 is regulated by ROS and TGF-beta3 seems to be unaffected by both of them. The expression of TGF-beta receptors appeared to be modulated by NO and ROS levels. The relevance of the present findings to osteoarthritis (OA) physiopathology and the potential use of antioxidant therapy to treat this disease are discussed.
Disciplines :
Rheumatology
Author, co-author :
Ayache, N.
Boumediene, K.
Mathy, Marianne ; Université de Liège - ULiège > Département des sciences de la motricité > Unité de recherche sur l'os et le cartillage (U.R.O.C.)
Reginster, Jean-Yves ; Université de Liège - ULiège > Département des sciences de la santé publique > Epidémiologie et santé publique
Henrotin, Yves ; Université de Liège - ULiège > Département des sciences de la motricité > Unité de recherche sur l'os et le cartillage (U.R.O.C.) - Didactique des sciences de la santé - Pathologie générale et physiopathologie
Pujol, J.-P.
Language :
English
Title :
Expression of TGF-betas and their receptors is differentially modulated by reactive oxygen species and nitric oxide in human articular chondrocytes.
Pujol J.-P., Loyau G. (1987) Interleukin-1 and osteoarthritis. Life Sci 41:1187-1198.
Pelletier J.-P., Martel-Pelletier J.J. (1989) Evidence for the involvement of interleukin-1 in human osteoarthritic cartilage degradation: Protective effect of NSAID. Rheumatol. J 16:16-27.
Martel-Pelletier J., Di Battista J., Lajeunesse D. (1999) Biochemical factors in joint articular tissue degradation in osteoarthritis. Osteoarthritis: Clinical and Experimental Aspects , Reginster J-Y, Pelletier J-P, Martel-Pelletier J, Henrotin Y, Eds. Berlin: Springer-Verlag; 156-187.
Pujol J.-P., Galéra P., Pronost S., Boumediène K., Vivien D., Macro M. (1994) Transforming growth factor-β (TGF-β) and articular chondrocytes. Ann. Endocrinol 55:109-120.
Rédini F., Mauviel A., Pronost S., Loyau G., Pujol J.-P. (1993) Transforming growth factor-beta sign exerts opposite effects from interleukin-1 (IL-1β) on cultured rabbit articular chondrocytes through reduction of IL-1 receptor expression. Arthritis Rheum 36:44-50.
Van den Berg W., van der Kraan P.M., van Beuningen P.M. (1999) Role of growth factors and cartilage repair. Osteoarthritis: Clinical and Experimental Aspects , Reginster J-Y, Pelletier J-P, Martel-Pelletier J, Henrotin Y, Eds. Berlin: Springer-Verlag; 188-209.
Seyedin S.M., Thompson A.Y., Bentz H., Rosen D.M., McPherson J.M., Conte A. (1986) Cartilage-inducing factor-A: Apparent identity to transforming growth factor-β. J. Biol. Chem 261:5693-5695.
Ellingsworth L.R., Brennan J.E., Fok K., Rosen D.M., Bentz H., Piez K.A. (1986) Antibodies to the N-terminal portion of cartilage-inducing factor A and transforming growth factor-β. J. Biol. Chem 261:12362-12367.
Frazer A., Seid J.M., Hart K.A., Bentley H., Bunning R.A.D., Russel R.G.G. (1991) Detection of mRNA for the transforming growth factor-β family in human chondrocytes by the polymerase chain reaction. Biochem. Biophys. Res. Commun 180:602-608.
Vivien D., Boumediène K., Galéra P., Lebrun E., Pujol J.-P. (1992) Flow cytometric detection of transforming growth factor-β expression in rabbit articular chondrocytes (RAC) in culture-Association with S-phase traverse. Exp. Cell Res 203:56-61.
Vivien D., Rédini F., Galéra P., Lebrun E., Loyau G., Pujol J.P. (1993) Rabbit articular chondrocytes (RAC) express distinct TGF-β receptor phenotypes as a function of cell cycle phases. Exp. Cell Res 205:165-170.
Boumediène K., Conrozier T., Mathieu P., Richard M., Marcelli C., Vignon E. (1998) Decrease of cartilage transforming growth factor-β receptor II expression in the rabbit experimental osteoarthritis. Potential role in cartilage breakdown. Osteoarthritis Cart 6:146-149.
Serra R., Johnson M., Filvaroff E.H., Laborde J., Sheehan D.M., Derynck R. (1997) Expression of a truncated, kinase-defective TGF-β type II receptor in mouse skeletal tissue promotes terminal chondrocyte differentiation and osteoarthritis. J. Cell Biol 139:541-552.
Pujol J.-P. (1999) TGF-β and osteoarthritis: In vivo veritas?. Osteoarthritis Cart 7:1-2.
Hibbs J.J., Taintor R.R., Vavrin Z. (1987) Macrophage cytotoxicity: Role for L-arginine deiminase and imino nitrogen oxidation to nitrite. Science 235:473-476.
Stuehr D.J., Gross S.S., Sakuma I., Levi R., Nathan C.F. (1989) Activated murine macrophages secrete a metabolite of arginine with the bioactivity of endothelium-derived relaxing factor and the chemical reactivity of nitric oxide. J. Exp. Med 169:1011-1020.
Stadler J., Stefanovic-Racic M., Billiar T.R., Curran R.D., McIntyre L.A., Georgescu H.I., Simmons R.L., Evans C.H. (1991) Articular chondrocytes synthesize nitric oxide in response to cytokines and lipopolysaccharide. J. Immunol 147:3915-3920.
Palmer R.M.J., Andrews T., Foxwell N.A., Moncada S. (1992) Glucocorticoids do not affect the induction of a novel calcium-dependent nitric oxide synthase in rabbit chondrocytes. Biochem. Biophys. Res. Commun 188:209-215.
Palmer R.M.J., Hickery M.S., Charles I.G., Moncada S., Bayliss M.T. (1993) Induction of nitric oxide synthase in human chondrocytes. Biochem. Biophys. Res. Commun 193:398-405.
Stefanovic-Racic M., Taskiran D., Georgescu H.I., Evans C.H. (1995) Modulation of chondrocyte proteoglycan synthesis by endogeneously produced nitric oxide. Inflamm. Res 44(SUPPL. 2).
Cao M., Stefanovic-Racic M., Georgescu H.I., Miller L.A., Evans C.H. (1998) Generation of nitric oxide by meniscal cells and its effect on matrix metabolism: Stimulation of collagen production by arginine. J. Orthop. Res 16:104-111.
Hickery M.S., Bayliss M.T. (1998) Interleukin-1 induced nitric oxide inhibits sulphation of glycosaminoglycan chains in human chondrocytes. Biochim. Biophys. Acta 1425:282-290.
Oh M., Fukuda K., Asada S., Yasuda Y., Tanaka S. (1998) Concurrent generation of nitric oxide and superoxide inhibits proteoglycan synthesis in bovine articular chondrocytes: Involvement of peroxynitrite. J. Rheumatol 25:2169-2174.
Stefanovic-Racic M., Möllers M.O., Miller L.A., Evans C.H. (1997) Nitric oxide and proteoglycan turnover in rabbit articular cartilage. J. Orthop. Res 15:442-449.
Farrell A.J., Blake D.R., Palmer R.M., Moncada S. (1992) Increased concentrations of nitrite in synovial fluid and serum samples suggest increased nitric oxide synthesis in rheumatic diseases. Ann. Rheum. Dis 51:1219-1222.
Ueki Y., Myake S., Tominaga Y., Eguchi K. (1996) Increased nitric oxide levels in patients with rheumatoid arthritis. J. Rheumatol 23:230-236.
Thannickal V.J., Fanburg B.L. (2000) Reactive oxygen species in cell signaling. Am. J. Physiol. Lung Cell Mol. Physiol 279.
Greenwald R.A., Moy W.W. (1980) Effect of oxygen-derived free radicals on hyaluronic acid. Arthritis Rheum 23:455-463.
Panasyuk A., Frati E., Ribault D., Mitrovic D. (1994) Effect of reactive oxygen species on the biosynthesis and structure of newly synthesized proteoglycans. Free Radic. Biol. Med 16:157-176.
Greenwald R.A., Moy W.W. (1979) Inhibition of collagen gelation by action of the superoxide radical. Arthritis Rheum 22:251-259.
Vincent F., Brun H., Chain X., Ronot M., Adolphe M. (1989) Effects of oxygen-free radicals on proliferation kinetics of cultured rabbit articular chondrocytes. J. Cell Physiol 141:262-266.
Larsen N.E., Lombard K.M., Parent E.G., Balazs A.A. (1992) Effect of hylan on cartilage and chondrocyte cultures. J. Orthop. Res 10:23-32.
Baker M.S., Feigan J., Lowther D.A. (1989) The mechanism of chondrocyte hydrogen peroxide damage. Depletion of intracellular ATP due to suppression of glycolysis caused by oxidation of glyceraldehyde-3-phosphate deshydrogenase. J. Rheumatol 16:7-14.
Kvam B.J., Fragonas E., Degrassi A., Kvam C., Matulova M., Pollesello P. (1995) Oxygen-derived free radicals (ODFR) action on hyaluronan (HA), on two ester derivatives, and on the metabolism of articular chondrocytes. Exp. Cell Res 218:79-86.
Greenwald R.A. (1991) Oxygen radicals, inflammation and arthritis: Pathophysiological consideration and implications for treatment. Semin. Arthritis Rheum 20:219-240.
Isawasaki Y., Masibara T., Hirohata K. (1988) A mechanism of cartilage destruction in immunological-mediated inflammation: Increased superoxide anion release from chondrocytes in response to interleukins and interferons. Orthop. Trans 12:438-439.
Tiku M.L., Yan R., Chen K.Y. (1998) Hydroxyl free radical formation by chondrocytes and cartilage as detected by electron paramagnetic resonance spectroscopy using spin trapping agents. Free Rad. Res 29:177-188.
Tiku M.L., Liesh J.B., Robertson F.M. (1990) Production of hydrogen peroxide by rabbit articular chondrocytes. J. Immunol 145:690-696.
Henrotin Y., Deby-Dupont G., Deby C., De Bruyn M., Lamy M., Franchimont P. (1993) Production of active oxygen species by isolated human chondrocytes. Br. J. Rheumatol 32:562-567.
Lo Y.Y.C., Cruz T.F. (1995) Involvement of reactive oxygen species in cytokine and growth factor induction of c-fos expression in chondrocytes. J. Biol. Chem 270:11727-11730.
Lo Y.Y.C., Wong J.M.S., Cruz T.F. (1996) Reactive oxygen species mediate cytokine activation of c-Jun NH2-terminal kinases. J. Biol. Chem 271:15703-15707.
Saura R., Matsubara T., Hirohata K., Itoh H. (1992) Damage of cultured chondrocytes by hydrogen peroxide derived from polymorphonuclear leukocytes: A possible mechanism of cartilage degradation. Rheumatol. Int 12:141-146.
Beckman J.S., Beckman T.W., Chen J., Marshall P.A., Freeman B.A. (1990) Apparent hydroxyl radical production by peroxynitrite: Implications for endothelial injury from nitric oxide and superoxide. Proc. Natl. Acad. Sci. USA 87:1620-1624.
Studer R.K., Georgescu H.I., Miller L.A., Evans C.H. (1999) Inhibition of transforming growth factor β production by nitric oxide-treated chondrocytes. Arthritis Rheum 42:248-257.
Ginn-Pease M.E., Whisler R.L. (1998) Redox signals and NF-κB activation in T cells. Free Radic. Biol. Med 25:346-361.
Jiang B., Brecher P. (2000) N-acetyl-cysteine potentiates interleukin-1 beta induction of nitric oxide synthase: Role of p44/42 mitogen-activated protein kinases. Hypertension 35:914-918.
Kamata H., Tanaka C., Yagisawa H., Matsuda S., Gotoh Y., Nishida E., Hirata H. (1996) Suppression of nerve growth factor-induced neuronal differentiation of PC12 cells. N-acetylcysteine uncouples the signal transduction from ras to the mitogen-activated protein kinase cascade. J. Biol. Chem 271:33018-33025.
Kim S.J., Glick A., Sporn M.B., Roberts A.B. (1989) Characterization of the promoter region of the human transforming growth factor-beta 1 gene. J. Biol. Chem 264:402-408.
Noma T., Glick A.B., Geiser A.G., O'Reilly M.A., Miller J., Roberts A.B. (1991) Molecular cloning and structure of the human transforming growth factor-β2 gene promoter. Growth Factors 4:247-255.
O'Reilly A.M., Geiser A.G., Kim S.J., Bruggeman L.A., Luu A.X., Roberts A.B. (1992) Identification of an activating transcription factor binding site in the human transforming growth factor β2 promoter. J. Biol. Chem 28:19938-19943.
Geiser A.G., Busam K.J., Kim S.J., Lafyatis R., O'Reilly M.A., Webbink R. (1993) Regulation of the transforming growth factor-β1 and β3 promoters by transcription factor SP1. Gene 129:223-233.
Villiger P.M., Lotz M. (1992) Differential expression of TGF-β isoforms by human articular chondrocytes in response to growth factors. J. Cell Physiol 151:318-325.