Reference : PAM, sediments, and interrupted flow effects on rill erosion and Intake rate
Scientific journals : Article
Engineering, computing & technology : Multidisciplinary, general & others
Physical, chemical, mathematical & earth Sciences : Earth sciences & physical geography
PAM, sediments, and interrupted flow effects on rill erosion and Intake rate
Sirjacobs, Damien mailto [Université de Liège - ULiège > Département des sciences de la vie > Algologie, mycologie et systématique expérimentale >]
Shainberg, Itzhak [Volcani Research Center - Bet Dagan - Israël > Soil and Water Department > > >]
Rapp, Iddo [Volcani Research Center - Bet Dagan - Israël > Soil and Water department > > >]
Levy, G. J. mailto [Volcani Research Center - Bet Dagan - Israël > Soil and Water Department > > >]
Soil Science Society of America Journal
American Society of Agronomy
Yes (verified by ORBi)
[en] Polyacrylamide ; Soil ; Infiltration ; Erosion ; interrupted flow ; surge irrigation ; Intake rate ; Alfisol ; Vertisol
[en] The reduction in the intake rate (IR) during interrupted irrigation is difficult to predict. Sediments in irrigation water decrease the effect of interrupted irrigation on IR. Polyacrylamide (PAM) reduces rill erosion, but its effect on IR is controversial. The effects of water quality (tap water, tap water containing sediments, and 10 g m−3 PAM solution) and interrupted flow on IR and rill erosion in an Alfisol (Calcic Haploxeralf) and a Vertisol (Typic Chromoxerert) were studied using laboratory miniflumes. Rill erosion in both soils was eliminated by the PAM treatment in both continuous and interrupted flow. The PAM application reduced IR in the Alfisol and increased it in the Vertisol. In the Alfisol, interrupted flow reduced IR of the PAM solution by 37% compared with only 18% for tap water. In the Vertisol, interrupted flow reduced IR only slightly and the decrease was not affected by the polymer. When the water contained sediments, cumulative infiltration was reduced by 22% for the Vertisol and 59% for the Alfisol in comparison with tap water. These reductions were attributed to depositional seal formation. The IR of the Alfisol was more susceptible to depositional seal formation than the Vertisol. The presence of sediments in water was effective in reducing rill erosion. The effects of interrupted flow with PAM on reducing IR were explained by partial blocking of the conducting pores leading to greater suction and compaction of the soil surface. For sediment-laden irrigation water, interrupted flow had no advantage over continuous flow in reducing IR because of depositional seal formation associated with the sediments in the water.
Researchers ; Professionals ; Students

File(s) associated to this reference

Fulltext file(s):

Restricted access
sssaj-64-4-1487_Sirjacobs_2000_PAM sedim surge effect on erosion and infiltration.pdfPublisher postprint266.27 kBRequest copy

Bookmark and Share SFX Query

All documents in ORBi are protected by a user license.