The University of Liège wishes to use cookies or trackers to store and access your personal data, to perform audience measurement. Some cookies are necessary for the website to function. Cookie policy.
Big data; Personalized medicine; Bioinformatics; Genomics; Transcriptomics; Proteomics; Metabolomics
Abstract :
[en] The increasing interest for personalized medicine evolves together with two major technological advances. First, the new-generation, rapid and less expensive, DNA sequencing method, combined with remarkable progresses in molecular biology leading to the post-genomic era (transcriptomics, proteomics, metabolomics). Second, the refinement of computing tools (IT), which allows the immediate analysis of a huge amount of data (especially, those resulting from the omics approaches) and, thus, creates a new universe for medical research, that of <<big data>> analyzed by computerized modelling. This article for scientific communication and popularization briefly describes the main advances in these two fields of interest. These technological progresses are combined with those occurring in communication, which makes possible the development of artificial intelligence. These major advances will most probably represent the grounds of the future personalized medicine. [fr] L’intérêt grandissant pour la médecine personnalisée
a évolué conjointement avec deux types de progrès technologiques
remarquables. Tout d’abord, la technique de séquen-
çage d’ADN de nouvelle génération, rapide et peu coûteuse,
couplée aux progrès de la biologie moléculaire ouvrant la
voie à l’ère post-génomique (transcriptomique, protéomique,
métabolomique). Ensuite, le perfectionnement des outils
informatiques, ce qui permet l’analyse, quasi instantanée, de
grandes quantités de données (notamment celles, nombreuses,
rendues accessibles par les approches «omiques») et crée un
véritable nouvel univers en recherche médicale, celui des «big
data» analysé par modélisation bioinformatique. Cet article
de vulgarisation décrit brièvement les avancées dans ces deux
domaines. Ces progrès technologiques s’associent à ceux enregistrés
dans les techniques de communication et d’interconnexion,
aboutissant à la création d’une véritable intelligence
artificielle. Ces avancées constituent sans doute les fondements
de la médecine personnalisée du futur.
Mots-clés : Big data - Bioinformatique - Génomique - Transcriptomique
- Protéomique - Métabolomique - Médicine personnalisée
Disciplines :
Human health sciences: Multidisciplinary, general & others
Cavalier E., Approche globale et personnalisée des biomarqueurs. Rev Med Liège, 2015, 70, 257-261.
Dideberg V, Segers K, Koopmansch B, et al., Pharmacogénomique et médecine personnalisée : Vers un screening systématique de la population ? Rev Med Liège, 2015, 70, 251-256.
Tanaka H., Omics-based medicine and systems pathology. A new perspective for personalized and predictive medicine. Methods Inf Med, 2010, 49, 173-185.
European Commission Health Research Directorate., -Omics in personalized medicine. Workshop to explore the role of -omics in the development of personalised medicine http://ec.europa.eu/research/health/pdf/sum-mary-report-omics-for-personalised-medicine-workshop-en.pdf, 2010.
Ginsburg GS, Willard HF., Genomic and personalized medicine : Foundations and applications. Transl Res, 2009, 154, 277-287.
Scheen AJ, Junien C., Epigénétique, interface entre environnement et gènes : Rô1e dans les maladies complexes. Rev Med Liège, 2012, 67, 250-257.
Wang W, Krishnan E., Big data and clinicians: A review on the state of the science. JMIR Med Inform, 2014, 2, e1.
Issa NT, Byers SW, Dakshanamurthy S., Big data: The next frontier for innovation in therapeutics and healthcare. Expert Rev Clin Pharmacol, 2014, 7, 293-298.
Scheen AJ, Giet D., Médecine personnalisée : Tout bénéfice pour le patient, mais nouveau challenge pour la relation médecin-malade. Rev Med Liège, 2015, 70, 247-250.
Zou D, Ma L, Yu J, et al., Biological databases for human research. Genomics, Proteomics Bioinformatics, 2015, 13, 55-63.
Calabrese B, Cannataro M., Bioinformatics and microarray data analysis on the cloud. Methods Mol Biol, 2015, Apr 12. [Epub ahead of print].
Li L., The potential of translational bioinformatics approaches for pharmacology research. Br J Clin Pharmacol, 2015, Mar 5. doi: 10.1111/bcp.12622. [Epub ahead of print]
Qu H, Fang X., A brief review on the Human Encyclopedia of DNA Elements (ENCODE) project. Genomics, Proteomics Bioinformatics, 2013, 11, 135-141.
Merelli I, Perez-Sanchez H, Gesing S, et al., Managing, analysing, and integrating big data in medical bioinformatics: Open problems and future perspectives. Biomed Res Int, 2014, 134023.
Robinson SW, Fernandes M, Husi H., Current advances in systems and integrative biology. Comput Struct Biotechnol J, 2014, 11, 35-46.
Yan Q., Translational bioinformatics and systems biology approaches for personalized medicine. Methods Mol Biol, 2010, 662, 167-178.
Meyer UA, Zanger UM, Schwab M., Omics and drug response. Annu Rev Pharmacol Toxicol, 2013, 53, 475-502.
Manning T, Sleator RD, Walsh P., Biologically inspired intelligent decision making: A commentary on the use of artificial neural networks in bioinformatics. Bioengineered, 2014, 5, 80-95.
Sheikhtaheri A, Sadoughi F, Hashemi Dehaghi Z., Developing and using expert systems and neural networks in medicine: A review on benefits and challenges. J Med Syst, 2014, 38, 110.