Article (Scientific journals)
Benchmarking for Bayesian Reinforcement Learning
Castronovo, Michaël; Ernst, Damien; Couëtoux, Adrien et al.
2016In PLoS ONE
Peer Reviewed verified by ORBi
 

Files


Full Text
BBRL_final.pdf
Publisher postprint (4.56 MB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Bayesian reinforcement learning; Offline learning; BBRL library
Abstract :
[en] In the Bayesian Reinforcement Learning (BRL) setting, agents try to maximise the col- lected rewards while interacting with their environment while using some prior knowledge that is accessed beforehand. Many BRL algorithms have already been proposed, but even though a few toy examples exist in the literature, there are still no extensive or rigorous benchmarks to compare them. The paper addresses this problem, and provides a new BRL comparison methodology along with the corresponding open source library. In this methodology, a comparison criterion that measures the performance of algorithms on large sets of Markov Decision Processes (MDPs) drawn from some probability distributions is defined. In order to enable the comparison of non-anytime algorithms, our methodology also includes a detailed analysis of the computation time requirement of each algorithm. Our library is released with all source code and documentation: it includes three test prob- lems, each of which has two different prior distributions, and seven state-of-the-art RL algorithms. Finally, our library is illustrated by comparing all the available algorithms and the results are discussed.
Disciplines :
Computer science
Author, co-author :
Castronovo, Michaël ;  Université de Liège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Smart grids
Ernst, Damien  ;  Université de Liège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Smart grids
Couëtoux, Adrien ;  Université de Liège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Smart grids
Fonteneau, Raphaël  ;  Université de Liège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes et modélisation
Language :
English
Title :
Benchmarking for Bayesian Reinforcement Learning
Publication date :
June 2016
Journal title :
PLoS ONE
eISSN :
1932-6203
Publisher :
Public Library of Science, San Franscisco, United States - California
Peer reviewed :
Peer Reviewed verified by ORBi
Tags :
CÉCI : Consortium des Équipements de Calcul Intensif
Funders :
F.R.S.-FNRS - Fonds de la Recherche Scientifique
Available on ORBi :
since 14 September 2015

Statistics


Number of views
703 (57 by ULiège)
Number of downloads
526 (19 by ULiège)

Scopus citations®
 
5
Scopus citations®
without self-citations
4
OpenCitations
 
6
OpenAlex citations
 
11

Bibliography


Similar publications



Contact ORBi